1887
Research Open Access
Like 0

Abstract

Background

, a pathogen commonly infecting humans and bovines, is a prime sentinel indicator and predictor for antimicrobial resistance (AMR). Tracking epidemiological trends of AMR is essential to address this global One Health threat.

Aim

To perform a comprehensive retrospective epidemiological analysis of AMR trends in isolated from human urine and blood and bovine specimens, and compare with antimicrobial consumption or sales data for humans.

Methods

All isolates with susceptibility results from human urine (n = 122,419), blood (n = 2,373) and bovine specimens (n = 585) from 2012–23 in the Mid-West of Ireland were analysed. The resistance trends of nine commonly used antimicrobials were compared with their consumption by humans or sales in community and hospital settings.

Results

Over the 12-year period, resistance against common antimicrobials was lowest among the bovine isolates (range: 2–44%). Human urine isolates showed lower resistance (5–59%) than bloodstream isolates (12–69%). There was a downward trend in resistance to all antimicrobials between 2012 and 2023 in the human isolates (p < 0.001), except for piperacillin/tazobactam where resistance increased, in each case correlating with antimicrobial usage. Bovine isolates demonstrated reduced resistance to co-amoxiclav (p = 0.001), with no trend observed for other antimicrobials.

Conclusion

Our data showed reduced resistance to many antimicrobials for from human and bovine populations in our region. Increased use of ‘preferred’ antimicrobials in humans and reduced use of those ‘to be avoided’ was observed. The findings indicate the emerging effectiveness of AMR strategies and highlight the value of One Health AMR.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.13.2400512
2025-04-03
2025-04-04
/content/10.2807/1560-7917.ES.2025.30.13.2400512
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/13/eurosurv-30-13-4.html?itemId=/content/10.2807/1560-7917.ES.2025.30.13.2400512&mimeType=html&fmt=ahah

References

  1. Paitan Y. Current trends in antimicrobial resistance of Escherichia coli. Curr Top Microbiol Immunol. 2018;416:181-211.  https://doi.org/10.1007/82_2018_110  PMID: 30088148 
  2. Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: an overview. Int J Environ Res Public Health. 2013;10(12):6235-54.  https://doi.org/10.3390/ijerph10126235  PMID: 24287850 
  3. Botrel MA, Haenni M, Morignat E, Sulpice P, Madec JY, Calavas D. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhône-Alpes, France. Foodborne Pathog Dis. 2010;7(5):479-87.  https://doi.org/10.1089/fpd.2009.0425  PMID: 19919286 
  4. Yamamura F, Sugiura T, Munby M, Shiokura Y, Murata R, Nakamura T, et al. Relationship between Escherichia coli virulence factors, notably kpsMTII, and symptoms of clinical metritis and endometritis in dairy cows. J Vet Med Sci. 2022;84(3):420-8.  https://doi.org/10.1292/jvms.21-0586  PMID: 35082195 
  5. Bourély C, Coeffic T, Caillon J, Thibaut S, Cazeau G, Jouy E, et al. Trends in antimicrobial resistance among Escherichia coli from defined infections in humans and animals. J Antimicrob Chemother. 2020;75(6):1525-9.  https://doi.org/10.1093/jac/dkaa022  PMID: 32049276 
  6. Perestrelo S, Amaro A, Brouwer MSM, Clemente L, Ribeiro Duarte AS, Kaesbohrer A, et al. Building an international One Health strain level database to characterise the epidemiology of AMR threats: ESBL-AmpC producing E. coli as an example-challenges and perspectives. Antibiotics (Basel). 2023;12(3):12.  https://doi.org/10.3390/antibiotics12030552  PMID: 36978419 
  7. O’Doherty J, Leader LFW, O’Regan A, Dunne C, Puthoopparambil SJ, O’Connor R. Over prescribing of antibiotics for acute respiratory tract infections; a qualitative study to explore Irish general practitioners’ perspectives. BMC Fam Pract. 2019;20(1):27.  https://doi.org/10.1186/s12875-019-0917-8  PMID: 30764777 
  8. Meena PR, Priyanka P, Singh AP. Extraintestinal pathogenic Escherichia coli (ExPEC) reservoirs, and antibiotics resistance trends: a one-health surveillance for risk analysis from "farm-to-fork". Lett Appl Microbiol. 2023;76(1):ovac016.  https://doi.org/10.1093/lambio/ovac016  PMID: 36688760 
  9. Hesp A, Veldman K, van der Goot J, Mevius D, van Schaik G. Monitoring antimicrobial resistance trends in commensal Escherichia coli from livestock, the Netherlands, 1998 to 2016. Euro Surveill. 2019;24(25):1800438.  https://doi.org/10.2807/1560-7917.ES.2019.24.25.1800438  PMID: 31241037 
  10. Klein EY, Van Boeckel TP, Martínez EM, Pant S, Gandra S, Levin SA, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):E3463-70.  https://doi.org/10.1073/pnas.1717295115  PMID: 29581252 
  11. Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci U S A. 1999;96(3):1152-6.  https://doi.org/10.1073/pnas.96.3.1152  PMID: 9927709 
  12. Peñalva G, Högberg LD, Weist K, Vlahović-Palčevski V, Heuer O, Monnet DL, ESAC-Net study group, EARS-Net study group. Decreasing and stabilising trends of antimicrobial consumption and resistance in Escherichia coli and Klebsiella pneumoniae in segmented regression analysis, European Union/European Economic Area, 2001 to 2018. Euro Surveill. 2019;24(46):1900656.  https://doi.org/10.2807/1560-7917.ES.2019.24.46.1900656  PMID: 31771708 
  13. Noyes NR, Slizovskiy IB, Singer RS. Beyond antimicrobial use: a framework for prioritizing antimicrobial resistance interventions. Annu Rev Anim Biosci. 2021;9(1):313-32.  https://doi.org/10.1146/annurev-animal-072020-080638  PMID: 33592160 
  14. World Organisation for Animal Health (WHOA). 8th annual report on antimicrobial agents intended for use in animals. Paris: WHOA; 2024. Available from: https://www.woah.org/app/uploads/2024/05/woah-amu-report-2024-final.pdf
  15. The European Commission (EC). Farm to Fork Strategy. Brussels: EC. [Accessed: 12 Jul 2024] Available from: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en
  16. European Medicines Agency (EMA). European Surveillance of Veterinary Antimicrobial Consumption (ESVAC): Interactive ESVAC database. Amsterdam: EMA. [Accessed: 6 Apr 2024] Available from: https://www.ema.europa.eu/en/veterinary-regulatory-overview/antimicrobial-resistance-veterinary-medicine/european-surveillance-veterinary-antimicrobial-consumption-esvac-2009-2023
  17. Health Products Regulatory Authority (HPRA). Sales of veterinary antibiotics in Ireland during 2022. Dublin: www.hpra.ie. [Accessed: 20 Feb 2025]. Available from: https://assets.hpra.ie/data/docs/default-source/regulatory-report/veterinary-medicines/sales-of-veterinary-antibiotics-in-ireland/report-on-sales-of-veterinary-antibiotics-in-ireland-during-2022.pdf?sfvrsn=e776258f_1
  18. Department of Health. Ireland’s National Action Plan on Antimicrobial Resistance. Dublin: gov.ie. [Accessed: 28 Apr 2024] Available from: https://www.gov.ie/en/publication/ec1fdf-irelands-national-action-plan-on-antimicrobial-resistance-2017-2020
  19. Dept. of Health and Dept. of Agriculture Food and Marine. Ireland’s second One Health Action Plan on Antimicrobial Resistance 2021-2025 (iNAP2). Dublin: gov.ie; 2021. Available from: https://assets.gov.ie/215951/3a18768d-69dc-40fd-bfe5-ec4b31767d30.pdf
  20. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016. Available from: https://amr-review.org/Publications.html
  21. European Food Safety Authority, European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J. 2015;13(12):4329.  https://doi.org/10.2903/j.efsa.2015.4329 
  22. European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA) and European Medicines Agency (EMA). JIACRA IV: Fourth joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA. Stockholm, Parma, Amsterdam: ECDC, EFSA, EMA; 2024. Available from: https://www.ema.europa.eu/en/veterinary-regulatory-overview/antimicrobial-resistance-veterinary-medicine/analysis-antimicrobial-consumption-resistance-jiacra-reports#report-on-2019-21-jiacra-iv-65438
  23. Daly M, Powell J, O’Connell NH, Murphy L, Dunne CP. Antimicrobial resistance is prevalent in E.coli and other enterobacterales isolated from public and private drinking water supplies in the republic of ireland. Microorganisms. 2023;11(5):1224.  https://doi.org/10.3390/microorganisms11051224  PMID: 37317198 
  24. Andrade L, Chique C, Hynds P, Weatherill J, O’Dwyer J. The antimicrobial resistance profiles of Escherichia coli and Pseudomonas aeruginosa isolated from private groundwater wells in the Republic of Ireland. Environ Pollut. 2023;317:120817.  https://doi.org/10.1016/j.envpol.2022.120817  PMID: 36481470 
  25. Farrell ML, Joyce A, Duane S, Fitzhenry K, Hooban B, Burke LP, et al. Evaluating the potential for exposure to organisms of public health concern in naturally occurring bathing waters in Europe: A scoping review. Water Res. 2021;206:117711.  https://doi.org/10.1016/j.watres.2021.117711  PMID: 34637971 
  26. Farrell ML, Chueiri A, O’Connor L, Duane S, Maguire M, Miliotis G, et al. Assessing the impact of recreational water use on carriage of antimicrobial resistant organisms. Sci Total Environ. 2023;888:164201.  https://doi.org/10.1016/j.scitotenv.2023.164201  PMID: 37196970 
  27. Byrne AW, Garvan C, Bolton J, Naranjo-Lucena A, Madigan G, McElroy M, et al. Antimicrobial resistance in Escherichia coli isolated from pigs and associations with aggregated antimicrobial usage in Ireland: A herd-level exploration. Zoonoses Public Health. 2024;71(1):71-83.  https://doi.org/10.1111/zph.13086  PMID: 37899534 
  28. Byrne N, O’Neill L, Dίaz JAC, Manzanilla EG, Vale AP, Leonard FC. Antimicrobial resistance in Escherichia coli isolated from on-farm and conventional hatching broiler farms in Ireland. Ir Vet J. 2022;75(1):7.  https://doi.org/10.1186/s13620-022-00214-9  PMID: 35459196 
  29. Prendergast DM, Slowey R, Burgess CM, Murphy D, Johnston D, Morris D, et al. Characterization of cephalosporin and fluoroquinolone resistant Enterobacterales from Irish farm waste by whole genome sequencing. Front Microbiol. 2023;14:1118264.  https://doi.org/10.3389/fmicb.2023.1118264  PMID: 37032887 
  30. Ali S, Ryan L. Antimicrobial susceptibility patterns of community-acquired uropathogenic Escherichia coli, Dublin 2010-2022. Access Microbiol. 2023;5(8):acmi000633.v3.  https://doi.org/10.1099/acmi.0.000633.v3  PMID: 37691841 
  31. Whelan SO, Kyne S, Dore A, Glynn M, Higgins F, Hanahoe B, et al. Paediatric Escherichia coli urinary tract infection: susceptibility trends and clinical management-a retrospective analysis of a 10-year period. Ir J Med Sci. 2024;193(4):1891-900.  https://doi.org/10.1007/s11845-024-03670-0  PMID: 38565823 
  32. Stapleton PJ, Lundon DJ, McWade R, Scanlon N, Hannan MM, O’Kelly F, et al. Antibiotic resistance patterns of Escherichia coli urinary isolates and comparison with antibiotic consumption data over 10 years, 2005-2014. Ir J Med Sci. 2017;186(3):733-41.  https://doi.org/10.1007/s11845-016-1538-z  PMID: 28054236 
  33. Central Statistics Office (CSO). Census 2016 Small Area Population Statistics. Cork: CSO. [Accessed: 16 Jan 2022]. Available from: https://www.cso.ie/en/census/census2016reports/census2016smallareapopulationstatistics
  34. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints and dosing of antibiotics. Växjö: EUCAST; 2024. Available from: https://www.eucast.org/clinical_breakpoints
  35. Health Protection Surveillance Centre (HPSC). Surveillance of antimicrobial consumption. Dublin: HPSC. [Accessed: 23 Feb 2025] Available from: https://www.hpsc.ie/a-z/microbiologyantimicrobialresistance/europeansurveillanceofantimicrobialconsumptionesac
  36. Norwegian Institute of Public Health (FHI). ATC/DDD Index 2024. Oslo: FHI. [Accessed: 15 Jun 2024]. Available from: https://atcddd.fhi.no/atc_ddd_index
  37. European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption in the EU/EEA (ESAC-Net) - Annual Epidemiological Report for 2022. Stockholm: ECDC; 2023. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2022
  38. European Centre for Disease Prevention and Control (ECDC). Surveillance Atlas of Infectious Diseases. Stockholm: ECDC. [Accessed: 10 May 2024]. Available from: https://www.ecdc.europa.eu/en/surveillance-atlas-infectious-diseases
  39. Keighley C, van Oijen AM, Brentnall SJ, Sanderson-Smith M, Newton P, Miyakis S. Multi-year antimicrobial-resistance trends in urine Escherichia coli isolates from both community-based and hospital-based laboratories of an Australian local health district. J Glob Antimicrob Resist. 2022;31:386-90.  https://doi.org/10.1016/j.jgar.2022.11.008  PMID: 36436824 
  40. Ong A, Mahobia N, Browning D, Schembri M, Somani BK. Trends in antibiotic resistance for over 700,000 Escherichia coli positive urinary tract infections over six years (2014-2019) from a university teaching hospital. Cent European J Urol. 2021;74(2):249-54.  https://doi.org/10.5173/ceju.2021.0053  PMID: 34336246 
  41. Criscuolo NG, Pires J, Zhao C, Van Boeckel TP. resistancebank.org, an open-access repository for surveys of antimicrobial resistance in animals. Sci Data. 2021;8(1):189.  https://doi.org/10.1038/s41597-021-00978-9  PMID: 34294731 
  42. Sharma NGupta AWalia GBakhshi R. Pattern of antimicrobial resistance of Escherichia coli isolates from urinary tract infection patients: a three year retrospective study. J App Pharm Sci. 2016;6(1):062-065.  https://doi.org/10.7324/JAPS.2016.600110 
  43. Haindongo EH, Ndakolo D, Hedimbi M, Vainio O, Hakanen A, Vuopio J. Antimicrobial resistance prevalence of Escherichia coli and Staphylococcus aureus amongst bacteremic patients in Africa: a systematic review. J Glob Antimicrob Resist. 2023;32:35-43.  https://doi.org/10.1016/j.jgar.2022.11.016  PMID: 36526264 
  44. Health Services Executive (HSE). Urinary Conditions - Antibiotic Prescribing. Dublin: HSE; 2024. Available from: https://www.hse.ie/eng/services/list/2/gp/antibiotic-prescribing/conditions-and-treatments/urinary
  45. Health Services Executive (HSE). Preferred antibiotic use in the Community Green/Red Table. Dublin: HSE; 2023. Available from: https://www.hse.ie/eng/services/list/2/gp/antibiotic-prescribing/safe-prescribing/preferred-antibiotic-use-in-the-community-greenred-table.pdf
  46. European Medicines Agency (EMA). Sales of veterinary antimicrobial agents in 31 European countries in 2021. Amsterdam: EMA; 2022. Accessed: 24 Feb 2025. Available from: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2021-trends-2010-2021-twelfth-esvac_en.pdf
  47. Poku E, Cooper K, Cantrell A, Harnan S, Sin MA, Zanuzdana A, et al. Systematic review of time lag between antibiotic use and rise of resistant pathogens among hospitalized adults in Europe. JAC Antimicrob Resist. 2023;5(1):dlad001.  https://doi.org/10.1093/jacamr/dlad001  PMID: 36694849 
  48. Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, et al. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci. 2022;170:106103.  https://doi.org/10.1016/j.ejps.2021.106103  PMID: 34936936 
  49. Kaye KS, Gupta V, Mulgirigama A, Joshi AV, Scangarella-Oman NE, Yu K, et al. Antimicrobial resistance trends in urine Escherichia coli isolates from adult and adolescent females in the United States From 2011 to 2019: rising ESBL strains and impact on patient management. Clin Infect Dis. 2021;73(11):1992-9.  https://doi.org/10.1093/cid/ciab560  PMID: 34143881 
  50. Zay Ya K, Win PTN, Bielicki J, Lambiris M, Fink G. Association between antimicrobial stewardship programs and antibiotic use globally: a systematic review and meta-analysis. JAMA Netw Open. 2023;6(2):e2253806.  https://doi.org/10.1001/jamanetworkopen.2022.53806  PMID: 36757700 
  51. Kelly SA, O’Connell NH, Thompson TP, Dillon L, Wu J, Creevey C, et al. Large-scale characterization of hospital wastewater system microbiomes and clinical isolates from infected patients: profiling of multi-drug-resistant microbial species. J Hosp Infect. 2023;141:152-66.  https://doi.org/10.1016/j.jhin.2023.09.001  PMID: 37696473 
  52. Dembicka KM, Powell J, O’Connell NH, Hennessy N, Brennan G, Dunne CP. Prevalence of linezolid-resistant organisms among patients admitted to a tertiary hospital for critical care or dialysis. Ir J Med Sci. 2022;191(4):1745-50.  https://doi.org/10.1007/s11845-021-02773-2  PMID: 34505273 
  53. Kelly SA, O’Connell NH, Thompson TP, Dillon L, Wu J, Creevey C, et al. Large-scale characterisation of hospital wastewater system and infected patient microbiomes: profiling of multidrug-resistant microbial species. J Hosp Infect. 2023;141:152.  https://doi.org/10.1016/j.jhin.2023.09.001  PMID: 37696473 
/content/10.2807/1560-7917.ES.2025.30.13.2400512
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error