1887
Research Open Access
Like 0

Abstract

Background

Tick-borne encephalitis virus (TBEV) is expanding its range in Europe, with increasing human cases reported. Since the first detection of TBEV in ticks in the United Kingdom in 2019, one possible, two probable and two confirmed autochthonous cases in humans have been reported.

Aim

We aimed to understand the environmental and ecological factors limiting TBEV foci at their range edge and predict suitable areas for TBEV establishment across Great Britain (GB) by modelling patterns of exposure to TBEV in deer.

Methods

We developed spatial risk models for TBEV by integrating data between 2018 and 2021 on antibodies against tick-borne flavivirus in fallow, muntjac, red and roe deer with data on potential risk factors, including climate, land use, forest connectivity and distributions of bank voles and yellow-necked mice. We overlayed modelled suitability for TBEV exposure across GB with estimations on number of visitors to predict areas of high human exposure risk.

Results

Models for fallow, muntjac and roe deer performed well in independent validation (Boyce index > 0.92). Probable exposure to TBEV was more likely to occur in sites with a greater percentage cover of coniferous woodland, with multiple deer species, higher winter temperatures and rates of spring warming.

Conclusion

The resulting TBEV suitability maps can be used by public health bodies in GB to tailor surveillance and identify probable high-risk areas for human exposure to guide awareness raising and vaccination policy. Combining animal surveillance and iterative spatial risk modelling can enhance preparedness in areas of tick-borne disease emergence.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.13.2400441
2025-04-03
2025-04-04
/content/10.2807/1560-7917.ES.2025.30.13.2400441
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/13/eurosurv-30-13-5.html?itemId=/content/10.2807/1560-7917.ES.2025.30.13.2400441&mimeType=html&fmt=ahah

References

  1. Wondim MA, Czupryna P, Pancewicz S, Kruszewska E, Groth M, Moniuszko-Malinowska A. Epidemiological trends of trans-boundary tick-borne encephalitis in Europe, 2000-2019. Pathogens. 2022;11(6):704.  https://doi.org/10.3390/pathogens11060704  PMID: 35745558 
  2. Labuda M, Elecková E, Licková M, Sabó A. Tick-borne encephalitis virus foci in Slovakia. Int J Med Microbiol. 2002;291(Suppl 33):43-7.  https://doi.org/10.1016/S1438-4221(02)80008-X  PMID: 12141756 
  3. Balogh Z, Ferenczi E, Szeles K, Stefanoff P, Gut W, Szomor KN, et al. Tick-borne encephalitis outbreak in Hungary due to consumption of raw goat milk. J Virol Methods. 2010;163(2):481-5.  https://doi.org/10.1016/j.jviromet.2009.10.003  PMID: 19836419 
  4. Riccardi N, Antonello RM, Luzzati R, Zajkowska J, Di Bella S, Giacobbe DR. Tick-borne encephalitis in Europe: a brief update on epidemiology, diagnosis, prevention, and treatment. Eur J Intern Med. 2019;62:1-6.  https://doi.org/10.1016/j.ejim.2019.01.004  PMID: 30678880 
  5. Carpi G, Cagnacci F, Neteler M, Rizzoli A. Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area. Epidemiol Infect. 2008;136(10):1416-24. PMID: 18081949 
  6. Esser HJ, Liefting Y, Ibáñez-Justicia A, van der Jeugd H, van Turnhout CAM, Stroo A, et al. Spatial risk analysis for the introduction and circulation of six arboviruses in the Netherlands. Parasit Vectors. 2020;13(1):464.  https://doi.org/10.1186/s13071-020-04339-0  PMID: 32912330 
  7. Randolph SE, Šumilo D. Tick-borne encephalitis in Europe: dynamics of changing risk. In: Takken W, Knols BGJ (editors). Emerging pests and vector-borne diseases in Europe. Wageningen: Wageningen Academic; 24 Oct 2007. p. 185-206. Available from: https://brill.com/edcollchap-oa/book/9789086866267/BP000013.xml
  8. Van Heuverswyn J, Hallmaier-Wacker LK, Beauté J, Gomes Dias J, Haussig JM, Busch K, et al. Spatiotemporal spread of tick-borne encephalitis in the EU/EEA, 2012 to 2020. Euro Surveill. 2023;28(11):2200543.  https://doi.org/10.2807/1560-7917.ES.2023.28.11.2200543  PMID: 36927718 
  9. Jahfari S, de Vries A, Rijks JM, Van Gucht S, Vennema H, Sprong H, et al. Tick-borne encephalitis virus in ticks and roe deer, the Netherlands. Emerg Infect Dis. 2017;23(6):1028-30.  https://doi.org/10.3201/eid2306.161247  PMID: 28518024 
  10. Botelho-Nevers E, Gagneux-Brunon A, Velay A, Guerbois-Galla M, Grard G, Bretagne C, et al. Tick-borne encephalitis in Auvergne-Rhône-Alpes Region, France, 2017-2018. Emerg Infect Dis. 2019;25(10):1944-8.  https://doi.org/10.3201/eid2510.181923  PMID: 31538929 
  11. Holding M, Dowall SD, Medlock JM, Carter DP, Pullan ST, Lewis J, et al. Tick-borne encephalitis virus, United Kingdom. Emerg Infect Dis. 2020;26(1):90-6.  https://doi.org/10.3201/eid2601.191085  PMID: 31661056 
  12. Holding M, Dowall SD, Medlock JM, Carter DP, McGinley L, Curran-French M, et al. Detection of new endemic focus of tick-borne encephalitis virus (TBEV), Hampshire/Dorset border, England, September 2019. Euro Surveill. 2019;24(47):1900658.  https://doi.org/10.2807/1560-7917.ES.2019.24.47.1900658  PMID: 31771701 
  13. United Kingdom Health Security Agency (UKHSA). HAIRS risk assessment: tick-borne encephalitis. London: UKHSA; 5 Apr 2023 Available from: https://www.gov.uk/government/publications/hairs-risk-assessment-tick-borne-encephalitis/hairs-risk-assessment-tick-borne-encephalitis#summary
  14. Callaby H, Beard KR, Wakerley D, Lake MA, Osborne J, Brown K, et al. Tick-borne encephalitis: from tick surveillance to the first confirmed human cases, the United Kingdom, 2015 to 2023. Euro Surveill. 2025;30(5):2400404.  https://doi.org/10.2807/1560-7917.ES.2025.30.5.2400404  PMID: 39916608 
  15. Bakker JW, Pascoe EL, van de Water S, van Keulen L, de Vries A, Woudstra LC, et al. Infection of wild-caught wood mice (Apodemus sylvaticus) and yellow-necked mice (A. flavicollis) with tick-borne encephalitis virus. Sci Rep. 2023;13(1):21627.  https://doi.org/10.1038/s41598-023-47697-2  PMID: 38062065 
  16. Michelitsch A, Fast C, Sick F, Tews BA, Stiasny K, Bestehorn-Willmann M, et al. Long-term presence of tick-borne encephalitis virus in experimentally infected bank voles (Myodes glareolus). Ticks Tick Borne Dis. 2021;12(4):101693.  https://doi.org/10.1016/j.ttbdis.2021.101693  PMID: 33690089 
  17. Lindquist L, Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371(9627):1861-71.  https://doi.org/10.1016/S0140-6736(08)60800-4  PMID: 18514730 
  18. Hartemink NA, Randolph SE, Davis SA, Heesterbeek JAP. The basic reproduction number for complex disease systems: defining R(0) for tick-borne infections. Am Nat. 2008;171(6):743-54.  https://doi.org/10.1086/587530  PMID: 18462128 
  19. Dagostin F, Tagliapietra V, Marini G, Cataldo C, Bellenghi M, Pizzarelli S, et al. Ecological and environmental factors affecting the risk of tick-borne encephalitis in Europe, 2017 to 2021. Euro Surveill. 2023;28(42):2300121.  https://doi.org/10.2807/1560-7917.ES.2023.28.42.2300121  PMID: 37855903 
  20. Croft S, Ward AI, Aegerter JN, Smith GC. Modeling current and potential distributions of mammal species using presence-only data: a case study on British deer. Ecol Evol. 2019;9(15):8724-35.  https://doi.org/10.1002/ece3.5424  PMID: 31410275 
  21. Purse BV, Golding N. Tracking the distribution and impacts of diseases with biological records and distribution modelling. Biol J Linn Soc Lond. 2015;115(3):664-77.  https://doi.org/10.1111/bij.12567 
  22. Leach M, Scoones I. The social and political lives of zoonotic disease models: narratives, science and policy. Soc Sci Med. 2013;88:10-7.  https://doi.org/10.1016/j.socscimed.2013.03.017  PMID: 23702205 
  23. Purse BV, Darshan N, Kasabi GS, Gerard F, Samrat A, George C, et al. Predicting disease risk areas through co-production of spatial models: the example of Kyasanur Forest disease in India’s forest landscapes. PLoS Negl Trop Dis. 2020;14(4):e0008179.  https://doi.org/10.1371/journal.pntd.0008179  PMID: 32255797 
  24. Asaaga FA, Young JC, Srinivas PN, Seshadri T, Oommen MA, Rahman M, et al. Co-production of knowledge as part of a OneHealth approach to better control zoonotic diseases. PLOS Glob Public Health. 2022;2(3):e0000075.  https://doi.org/10.1371/journal.pgph.0000075  PMID: 36962247 
  25. The Environmental Information Data Centre (EIDC). Robinson EL, Blyth EM, Clark DB, Comyn-Platt E, Rudd AC. Climate hydrology and ecology research support system meteorology dataset for Great Britain (1961-2017) [CHESS-met] v 12. Lancaster: EIDC; 19 Jun 2020. Available from: https://nora.nerc.ac.uk/id/eprint/528230/
  26. Riley SJ, DeGloria SD, Elliot R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci. 1999;5(1-4):23-7.
  27. The Environmental Information Data Centre (EIDC). Land Cover Map 2020 (25m rasterised land parcels, GB). Lancaster: EIDC; 25 Oct 2021. Available from: https://www.data.gov.uk/dataset/9a091386-f591-4837-9d08-607ec75c8731/land-cover-map-2020-25m-rasterised-land-parcels-gb
  28. Croft S, Chauvenet ALM, Smith GC. A systematic approach to estimate the distribution and total abundance of British mammals. PLoS One. 2017;12(6):e0176339.  https://doi.org/10.1371/journal.pone.0176339  PMID: 28658248 
  29. Elith JH, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29(2):129-51.  https://doi.org/10.1111/j.2006.0906-7590.04596.x 
  30. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77(4):802-13.  https://doi.org/10.1111/j.1365-2656.2008.01390.x  PMID: 18397250 
  31. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol. 2012;3(2):327-38.  https://doi.org/10.1111/j.2041-210X.2011.00172.x 
  32. Brun P, Thuiller W, Chauvier Y, Pellissier L, Wüest RO, Wang Z, et al. Model complexity affects species distribution projections under climate change. J Biogeogr. 2020;47(1):130-42.  https://doi.org/10.1111/jbi.13734 
  33. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A. Evaluating the ability of habitat suitability models to predict species presences. Ecol Modell. 2006;199(2):142-52.  https://doi.org/10.1016/j.ecolmodel.2006.05.017 
  34. Hooftman DAP, Ridding LE, Redhead JW, Willcock S. National scale mapping of supply and demand for recreational ecosystem services. Ecol Indic. 2023;154:110779.  https://doi.org/10.1016/j.ecolind.2023.110779 
  35. Office for National Statistics (ONS). Counties and Unitary Authorities (December 2019) Boundaries UK BUC. Newport: ONS; 2020. Available from: https://geoportal.statistics.gov.uk
  36. Kunze M, Banović P, Bogovič P, Briciu V, Čivljak R, Dobler G, et al. Recommendations to improve tick-borne encephalitis surveillance and vaccine uptake in Europe. Microorganisms. 2022;10(7):1283.  https://doi.org/10.3390/microorganisms10071283  PMID: 35889002 
  37. Andreassen A, Jore S, Cuber P, Dudman S, Tengs T, Isaksen K, et al. Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasit Vectors. 2012;5(1):177.  https://doi.org/10.1186/1756-3305-5-177  PMID: 22913287 
  38. Lindgren E, Gustafson R. Tick-borne encephalitis in Sweden and climate change. Lancet. 2001;358(9275):16-8.  https://doi.org/10.1016/S0140-6736(00)05250-8  PMID: 11454371 
  39. Jaenson TGT, Hjertqvist M, Bergström T, Lundkvist A. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasit Vectors. 2012;5(1):184.  https://doi.org/10.1186/1756-3305-5-184  PMID: 22937961 
  40. Burri C, Bastic V, Maeder G, Patalas E, Gern L. Microclimate and the zoonotic cycle of tick-borne encephalitis virus in Switzerland. J Med Entomol. 2011;48(3):615-27.  https://doi.org/10.1603/ME10180  PMID: 21661323 
  41. Dautel H, Kämmer D, Kahl O. How an extreme weather spell in winter can influence vector tick abundance and tick-borne disease incidence. In: Braks MAH, van Wieren SE, Takken W, Sprong H (editors). Ecology and prevention of Lyme borreliosis. Wageningen: Wageningen Academic; 1 Jan 2016. p. 335-49. Available from: https://brill.com/edcollbook-oa/title/68507
  42. Kahl O, Gray JS. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick Borne Dis. 2023;14(2):102114.  https://doi.org/10.1016/j.ttbdis.2022.102114  PMID: 36603231 
  43. Michelitsch A, Wernike K, Klaus C, Dobler G, Beer M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11(7):669.  https://doi.org/10.3390/v11070669  PMID: 31336624 
  44. Cagnacci F, Bolzoni L, Rosà R, Carpi G, Hauffe HC, Valent M, et al. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: empirical assessment. Int J Parasitol. 2012;42(4):365-72.  https://doi.org/10.1016/j.ijpara.2012.02.012  PMID: 22464896 
  45. Rosà R, Tagliapietra V, Manica M, Arnoldi D, Hauffe HC, Rossi C, et al. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Int J Parasitol. 2019;49(10):779-87.  https://doi.org/10.1016/j.ijpara.2019.05.006  PMID: 31348960 
  46. Borde JP, Glaser R, Braun K, Riach N, Hologa R, Kaier K, et al. Decoding the geography of natural TBEV microfoci in Germany: a geostatistical approach based on land-use patterns and climatological conditions. Int J Environ Res Public Health. 2022;19(18):11830.  https://doi.org/10.3390/ijerph191811830  PMID: 36142105 
  47. Kiffner C, Zucchini W, Schomaker P, Vor T, Hagedorn P, Niedrig M, et al. Determinants of tick-borne encephalitis in counties of southern Germany, 2001-2008. Int J Health Geogr. 2010;9(1):42.  https://doi.org/10.1186/1476-072X-9-42  PMID: 20707897 
  48. Vanwambeke SO, Šumilo D, Bormane A, Lambin EF, Randolph SE. Landscape predictors of tick-borne encephalitis in Latvia: land cover, land use, and land ownership. Vector Borne Zoonotic Dis. 2010;10(5):497-506.  https://doi.org/10.1089/vbz.2009.0116  PMID: 19877818 
  49. Zeimes CB, Olsson GE, Hjertqvist M, Vanwambeke SO. Shaping zoonosis risk: landscape ecology vs. landscape attractiveness for people, the case of tick-borne encephalitis in Sweden. Parasit Vectors. 2014;7(1):370.  https://doi.org/10.1186/1756-3305-7-370  PMID: 25128197 
  50. Rizzoli A, Hauffe HC, Tagliapietra V, Neteler M, Rosà R. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS One. 2009;4(2):e4336.  https://doi.org/10.1371/journal.pone.0004336  PMID: 19183811 
  51. Ratcliffe P, Claridge J. Thetford Forest Park - the ecology of a pine forest. Forestry Commission Technical Paper 13. Edinburgh: Forestry Commission; 1996. Available from: https://cdn.forestresearch.gov.uk/1996/04/fctp013.pdf
  52. Boden LA, McKendrick IJ. Model-based policymaking: a framework to promote ethical "good practice" in mathematical modeling for public health policymaking. Front Public Health. 2017;5:68.  https://doi.org/10.3389/fpubh.2017.00068  PMID: 28424768 
  53. Gandy SL, Hansford KM, Medlock JM. Possible expansion of Ixodes ricinus in the United Kingdom identified through the Tick Surveillance Scheme between 2013 and 2020. Med Vet Entomol. 2023;37(1):96-104.  https://doi.org/10.1111/mve.12612  PMID: 36239468 
  54. Aenishaenslin C, Charland K, Bowser N, Perez-Trejo E, Baron G, Milord F, et al. Behavioral risk factors associated with reported tick exposure in a Lyme disease high incidence region in Canada. BMC Public Health. 2022;22(1):807.  https://doi.org/10.1186/s12889-022-13222-9  PMID: 35459149 
  55. de la Fuente J, Estrada-Peña A, Rafael M, Almazán C, Bermúdez S, Abdelbaset AE, et al. Perception of ticks and tick-borne diseases worldwide. Pathogens. 2023;12(10):1258.  https://doi.org/10.3390/pathogens12101258  PMID: 37887774 
  56. Ribeiro R, Eze JI, Gilbert L, Macrae A, Duncan A, Baughan J, et al. Linking human tick bite risk with tick abundance in the environment: a novel approach to quantify tick bite risk using orienteers in Scotland. Ticks Tick Borne Dis. 2023;14(2):102109.  https://doi.org/10.1016/j.ttbdis.2022.102109  PMID: 36535202 
  57. Li S, Gilbert L, Vanwambeke SO, Yu J, Purse BV, Harrison PA. Lyme disease risks in Europe under multiple uncertain drivers of change. Environ Health Perspect. 2019;127(6):67010.  https://doi.org/10.1289/EHP4615  PMID: 31232609 
  58. Achazi K, Růžek D, Donoso-Mantke O, Schlegel M, Ali HS, Wenk M, et al. Rodents as sentinels for the prevalence of tick-borne encephalitis virus. Vector Borne Zoonotic Dis. 2011;11(6):641-7.  https://doi.org/10.1089/vbz.2010.0236  PMID: 21548766 
/content/10.2807/1560-7917.ES.2025.30.13.2400441
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error