1887
Surveillance Open Access
Like 0

Abstract

Background

Integrated genomic surveillance (IGS), i.e. the integrated analysis of pathogen whole genome sequencing and classical epidemiological data, can contribute substantially to the disease surveillance and infection prevention activities of local public health authorities (LPHAs).

Aim

Our aim was to characterise how LPHAs use IGS, and factors required or important for their implementation, in the context of the German public health system.

Methods

We employed a mixed-methods design combining a quantitative survey of 60 LPHAs in three German states with five qualitative case studies based on LPHAs in four German localities and one state-level public health authority.

Results

Approximately half of LPHAs reported adoption of IGS; applications included outbreak analysis (n = 25), targeting and evaluation of infection control measures (n = 25 and n = 18, respectively) and characterisation of pathogen transmission chains (n = 25). Factors identified as required or important for the implementation of IGS in LPHAs included fast sample-to-result turnaround times, organisational data interpretation capabilities and clearly defined surveillance sampling strategies. Based on the case studies in which the adoption of IGS was successful, we formulate recommendations for implementing IGS at the level of LPHAs, including establishment of dedicated IGS analysis teams within LPHAs, use of user-friendly digital solutions (e.g. browser-based dashboards) for data exchange and analysis, and implementation of IGS in collaboration with local academic institutions.

Conclusion

Our analysis paves the way for increasing the implementation of IGS by LPHAs in Germany and other countries with similarly structured public health systems.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.13.2400508
2025-04-03
2025-04-04
/content/10.2807/1560-7917.ES.2025.30.13.2400508
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/13/eurosurv-30-13-3.html?itemId=/content/10.2807/1560-7917.ES.2025.30.13.2400508&mimeType=html&fmt=ahah

References

  1. Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, et al. Pathogen genomics in public health. N Engl J Med. 2019;381(26):2569-80.  https://doi.org/10.1056/NEJMsr1813907  PMID: 31881145 
  2. Baker KS, Jauneikaite E, Hopkins KL, Lo SW, Sánchez-Busó L, Getino M, et al. Genomics for public health and international surveillance of antimicrobial resistance. Lancet Microbe. 2023;4(12):e1047-55.  https://doi.org/10.1016/S2666-5247(23)00283-5  PMID: 37977162 
  3. Black A, MacCannell DR, Sibley TR, Bedford T. Ten recommendations for supporting open pathogen genomic analysis in public health. Nat Med. 2020;26(6):832-41.  https://doi.org/10.1038/s41591-020-0935-z  PMID: 32528156 
  4. Nakel J, Robitaille A, Günther T, Rosenau L, Czech-Sioli M, Plenge-Bönig A, et al. Comparing susceptibility and contagiousness in concurrent outbreaks with a non-VOC and the VOC SARS-CoV-2 variant B.1.1.7 in daycare centers in Hamburg, Germany. Int J Hyg Environ Health. 2022;240:113928.  https://doi.org/10.1016/j.ijheh.2022.113928  PMID: 35093719 
  5. Nickbakhsh S, Hughes J, Christofidis N, Griffiths E, Shaaban S, Enright J, et al. Genomic epidemiology of SARS-CoV-2 in a university outbreak setting and implications for public health planning. Sci Rep. 2022;12(1):11735.  https://doi.org/10.1038/s41598-022-15661-1  PMID: 35853960 
  6. Günther T, Czech-Sioli M, Indenbirken D, Robitaille A, Tenhaken P, Exner M, et al. SARS-CoV-2 outbreak investigation in a German meat processing plant. EMBO Mol Med. 2020;12(12):e13296.  https://doi.org/10.15252/emmm.202013296  PMID: 33012091 
  7. Stoddard G, Black A, Ayscue P, Lu D, Kamm J, Bhatt K, et al. Using genomic epidemiology of SARS-CoV-2 to support contact tracing and public health surveillance in rural Humboldt County, California. BMC Public Health. 2022;22(1):456.  https://doi.org/10.1186/s12889-022-12790-0  PMID: 35255849 
  8. Houwaart T, Belhaj S, Tawalbeh E, Nagels D, Fröhlich Y, Finzer P, et al. Integrated genomic surveillance enables tracing of person-to-person SARS-CoV-2 transmission chains during community transmission and reveals extensive onward transmission of travel-imported infections, Germany, June to July 2021. Euro Surveill. 2022;27(43):2101089.  https://doi.org/10.2807/1560-7917.ES.2022.27.43.2101089  PMID: 36305336 
  9. Santiago GA, Flores B, González GL, Charriez KN, Huertas LC, Volkman HR, et al. Genomic surveillance of SARS-CoV-2 in Puerto Rico enabled early detection and tracking of variants. Commun Med (Lond). 2022;2(1):100.  https://doi.org/10.1038/s43856-022-00168-7  PMID: 35968047 
  10. Van Goethem N, Descamps T, Devleesschauwer B, Roosens NHC, Boon NAM, Van Oyen H, et al. Status and potential of bacterial genomics for public health practice: a scoping review. Implement Sci. 2019;14(1):79.  https://doi.org/10.1186/s13012-019-0930-2  PMID: 31409417 
  11. Deng X, den Bakker HC, Hendriksen RS. Genomic epidemiology: whole-genome-sequencing-powered surveillance and outbreak investigation of foodborne bacterial pathogens. Annu Rev Food Sci Technol. 2016;7(1):353-74.  https://doi.org/10.1146/annurev-food-041715-033259  PMID: 26772415 
  12. Universität Bielefeld. MRE-Netzwerk Ostwestfalen-Lippe. Bielefeld: Bielefeld University. [Accessed :13 Mar 2025]. Available from: https://www.uni-bielefeld.de/fakultaeten/medizin/fakultaet/arbeitsgruppen/environment/forschung/mre-netz-owl
  13. Leibniz-Institut für Virologie (LIV). Project HH Surv. Hamburg: LIV. [Accessed: 25 Jul 2024]. Available from: https://www.leibniz-liv.de/forschung/sars-cov-2/abgeschlossene-projekte
  14. Walker A, Houwaart T, Finzer P, Ehlkes L, Tyshaieva A, Damagnez M, et al. Characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection clusters based on integrated genomic surveillance, outbreak analysis and contact tracing in an urban setting. Clin Infect Dis. 2022;74(6):1039-46.  https://doi.org/10.1093/cid/ciab588  PMID: 34181711 
  15. Salzberger B, Mellmann A, Bludau A, Ciesek S, Corman V, Dilthey A, et al. An appeal for strengthening genomic pathogen surveillance to improve pandemic preparedness and infection prevention: the German perspective. Infection. 2023;51(4):805-11.  https://doi.org/10.1007/s15010-023-02040-9  PMID: 37129842 
  16. COVID-19 Genomics UK (COG-UK) [email protected]. An integrated national scale SARS-CoV-2 genomic surveillance network. Lancet Microbe. 2020;1(3):e99-100.  https://doi.org/10.1016/S2666-5247(20)30054-9  PMID: 32835336 
  17. Mehlis A, Locher V, Hornberg C. Barriers to organizational health literacy at public health departments in Germany. Health Lit Res Pract. 2021;5(3):e264-71.  https://doi.org/10.3928/24748307-20210809-01  PMID: 34533395 
  18. Mehlis A, Locher V, Hornberg C. Organizational health literacy of German public health departments (OHL-PH): development of a conceptual model employing expert interviews. Gesundheitswesen. 2022;84(4):263-70. German.  https://doi.org/10.1055/a-1510-8799  PMID: 34320678 
/content/10.2807/1560-7917.ES.2025.30.13.2400508
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error