1887
Research Open Access
Like 0

Abstract

Background

The first wave of the COVID-19 pandemic in 2020 was largely mitigated by limiting contacts in the general population. In early 2022, most contact-reducing measures were lifted.

Aim

To assess whether the population has reverted to pre-pandemic contact behaviour and how this would affect transmission potential of a newly emerging pathogen.

Methods

We compared two studies on contact behaviour in the Netherlands: the PIENTER Corona study, conducted during and after the pandemic (held every 2–6 months from April 2020) and the PIENTER3 study (2016–17, as pre-pandemic baseline). In both, participants (ages 1–85 years) reported number and age group of all face-to-face persons contacted on the previous day in a survey. Transmission potential was examined using the next-generation matrix approach.

Results

We found an average of 15.4 (95% CI: 14.3–16.4) community contacts per person per day after the pandemic in May 2023, 13% lower than baseline (17.8; 95% CI: 17.0–18.5). Among all ages, children (5–9 years) had the highest number of contacts, both pre- and post-pandemic. Mainly adults aged 20–59 years had not reverted to pre-pandemic behaviours, possibly because they more often work from home. Although the number of contacts is lower compared to the pre-pandemic period, the effect on transmission potential of a newly emerging respiratory pathogen is limited if all age groups were equally susceptible.

Conclusion

Continuous monitoring of contacts can signal changes in contact patterns and can define a ‘new normal’ baseline. Both aspects are needed to prepare for a future pandemic.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.43.2400143
2024-10-24
2024-10-30
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.43.2400143
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/43/eurosurv-29-43-2.html?itemId=/content/10.2807/1560-7917.ES.2024.29.43.2400143&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020). Geneva: WHO; 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  2. Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. 2020;368(6498):1481-6.  https://doi.org/10.1126/science.abb8001  PMID: 32350060 
  3. Jarvis CI, Van Zandvoort K, Gimma A, Prem K, Klepac P, Rubin GJ, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020;18(1):124.  https://doi.org/10.1186/s12916-020-01597-8  PMID: 32375776 
  4. Coletti P, Wambua J, Gimma A, Willem L, Vercruysse S, Vanhoutte B, et al. CoMix: comparing mixing patterns in the Belgian population during and after lockdown. Sci Rep. 2020;10(1):21885.  https://doi.org/10.1038/s41598-020-78540-7  PMID: 33318521 
  5. McCreesh N, Dlamini V, Edwards A, Olivier S, Dayi N, Dikgale K, et al. Impact of the Covid-19 epidemic and related social distancing regulations on social contact and SARS-CoV-2 transmission potential in rural South Africa: analysis of repeated cross-sectional surveys. BMC Infect Dis. 2021;21(1):928.  https://doi.org/10.1186/s12879-021-06604-8  PMID: 34496771 
  6. Backer JA, Bogaardt L, Beutels P, Coletti P, Edmunds WJ, Gimma A, et al. Dynamics of non-household contacts during the COVID-19 pandemic in 2020 and 2021 in the Netherlands. Sci Rep. 2023;13(1):5166.  https://doi.org/10.1038/s41598-023-32031-7  PMID: 36997550 
  7. Gimma A, Munday JD, Wong KLM, Coletti P, van Zandvoort K, Prem K, et al. Changes in social contacts in England during the COVID-19 pandemic between March 2020 and March 2021 as measured by the CoMix survey: A repeated cross-sectional study. PLoS Med. 2022;19(3):e1003907.  https://doi.org/10.1371/journal.pmed.1003907  PMID: 35231023 
  8. Backer JA, van de Kassteele J, El Fakiri F, Hens N, Wallinga J. Contact patterns of older adults with and without frailty in the Netherlands during the COVID-19 pandemic. BMC Public Health. 2023;23(1):1829.  https://doi.org/10.1186/s12889-023-16725-1  PMID: 37730628 
  9. Drolet M, Godbout A, Mondor M, Béraud G, Drolet-Roy L, Lemieux-Mellouki P, et al. Time trends in social contacts before and during the COVID-19 pandemic: the CONNECT study. BMC Public Health. 2022;22(1):1032.  https://doi.org/10.1186/s12889-022-13402-7  PMID: 35606703 
  10. Trentini F, Manna A, Balbo N, Marziano V, Guzzetta G, O’Dell S, et al. Investigating the relationship between interventions, contact patterns, and SARS-CoV-2 transmissibility. Epidemics. 2022;40:100601.  https://doi.org/10.1016/j.epidem.2022.100601  PMID: 35772295 
  11. Head JR, Andrejko KL, Cheng Q, Collender PA, Phillips S, Boser A, et al. School closures reduced social mixing of children during COVID-19 with implications for transmission risk and school reopening policies. J R Soc Interface. 2021;18(177):20200970.  https://doi.org/10.1098/rsif.2020.0970  PMID: 33849340 
  12. Freedman VA, Hu M, Kasper JD. Changes in older adults’ social contact during the COVID-19 Pandemic. J Gerontol B Psychol Sci Soc Sci. 2022;77(7):e160-6.  https://doi.org/10.1093/geronb/gbab166  PMID: 34529083 
  13. Godbout A, Drolet M, Mondor M, Simard M, Sauvageau C, De Serres G, et al. Time trends in social contacts of individuals according to comorbidity and vaccination status, before and during the COVID-19 pandemic. BMC Med. 2022;20(1):199.  https://doi.org/10.1186/s12916-022-02398-x  PMID: 35606803 
  14. Walde J, Chaturvedi M, Berger T, Bartz A, Killewald R, Tomori DV, et al. Effect of risk status for severe COVID-19 on individual contact behaviour during the SARS-CoV-2 pandemic in 2020/2021-an analysis based on the German COVIMOD study. BMC Infect Dis. 2023;23(1):205.  https://doi.org/10.1186/s12879-023-08175-2  PMID: 37024810 
  15. de Boer PT, van de Kassteele J, Vos ERA, van Asten L, Dongelmans DA, van Gageldonk-Lafeber AB, et al. Age-specific severity of severe acute respiratory syndrome coronavirus 2 in February 2020 to June 2021 in the Netherlands. Influenza Other Respir Viruses. 2023;17(8):e13174.  https://doi.org/10.1111/irv.13174  PMID: 37621921 
  16. Hoskins S, Beale S, Nguyen V, Boukari Y, Yavlinsky A, Kovar J, et al. Deprivation, essential and non-essential activities and SARS-CoV-2 infection following the lifting of national public health restrictions in England and Wales. NIHR Open Res. 2023;3:46.  https://doi.org/10.3310/nihropenres.13445.1  PMID: 37994319 
  17. Vos ERA, den Hartog G, Schepp RM, Kaaijk P, van Vliet J, Helm K, et al. Nationwide seroprevalence of SARS-CoV-2 and identification of risk factors in the general population of the Netherlands during the first epidemic wave. J Epidemiol Community Health. 2021;75(6):489-95.  https://doi.org/10.1136/jech-2020-215678  PMID: 33249407 
  18. Verberk JDM, Vos RA, Mollema L, van Vliet J, van Weert JWM, de Melker HE, et al. Third national biobank for population-based seroprevalence studies in the Netherlands, including the Caribbean Netherlands. BMC Infect Dis. 2019;19(1):470.  https://doi.org/10.1186/s12879-019-4019-y  PMID: 31138148 
  19. Backer JA, Mollema L, Vos ER, Klinkenberg D, van der Klis FR, de Melker HE, et al. Impact of physical distancing measures against COVID-19 on contacts and mixing patterns: repeated cross-sectional surveys, the Netherlands, 2016-17, April 2020 and June 2020. Euro Surveill. 2021;26(8):26.  https://doi.org/10.2807/1560-7917.ES.2021.26.8.2000994  PMID: 33632374 
  20. Government of the Netherlands. Personal Records Database (BRP). The Hague: Government of the Netherlands; 2023. Available from: https://www.government.nl/topics/personal-data/personal-records-database-brp
  21. Vos ERA, van Boven M, den Hartog G, Backer JA, Klinkenberg D, van Hagen CCE, et al. Associations between measures of social distancing and severe acute respiratory syndrome coronavirus 2 seropositivity: a nationwide population-based study in the Netherlands. Clin Infect Dis. 2021;73(12):2318-21.  https://doi.org/10.1093/cid/ciab264  PMID: 33772265 
  22. Vos ERA, van Hagen CCE, Wong D, Smits G, Kuijer M, Wijmenga-Monsuur AJ, et al. SARS-CoV-2 Seroprevalence Trends in the Netherlands in the Variant of Concern Era: Input for Future Response. Influenza Other Respir Viruses. 2024;18(6):e13312.  https://doi.org/10.1111/irv.13312  PMID: 38837866 
  23. National Institute for Public Health and the Environment (RIVM). Influenzavaccinatie. [Influenza vaccination.] Bilthoven: RIVM. [Accessed: 29 Jan 2024]. Dutch. Available from: https://lci.rivm.nl/richtlijnen/influenzavaccinatie
  24. Statistics Netherlands. Bevolking; hoogstbehaald onderwijsniveau en onderwijsrichting, 2003-2022. [Population; highest level of education and field of study, 2003-2022]. The Hague: CBS. [Accessed: 10 Oct 2023]. Dutch. Available from: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/85184NED/table?dl=984E1
  25. Backer JA, Wong D, Van der Klis FRM. Contact data of Pienter3 (2016-2017) and PiCo (2020-2023) studies in the Netherlands. Geneva: Zenodo. [Updated: 5 Mar 2024]. Available from: https://zenodo.org/records/10370353
  26. Backer JA. Contact surveys of PIENTER3 and corona pienter studies. Bilthoven: RIVM [Updated: 3 Jul 2024]. Available from: https://github.com/rivm-syso/pico_contactsurvey
  27. Statistics Netherlands. Bevolking op eerste vd maand; geslacht, lft, migratieachtergrond; 2016-2023 [Population on the first of the month; sex, age, migration background; 2016-2023]. The Hague: CBS [Accessed: 8 Aug 2023]. Dutch. Available from: https://opendata.cbs.nl/#/CBS/nl/dataset/83482NED/table?dl=98643
  28. Willem L, Van Hoang T, Funk S, Coletti P, Beutels P, Hens N. SOCRATES: an online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. BMC Res Notes. 2020;13(1):293.  https://doi.org/10.1186/s13104-020-05136-9  PMID: 32546245 
  29. Efron B. Better bootstrap confidence intervals. J Am Stat Assoc. 1987;82(397):171-85.  https://doi.org/10.1080/01621459.1987.10478410 
  30. Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006;164(10):936-44.  https://doi.org/10.1093/aje/kwj317  PMID: 16968863 
  31. Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365-82.  https://doi.org/10.1007/BF00178324  PMID: 2117040 
  32. Statistics Netherlands. Particuliere huishoudens naar samenstelling en grootte, 1 januari. [Private households by composition and size, 1 January]. The Hague: CBS. [Accessed: 29 Feb 2024]. Dutch. Available from: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37975/table?dl=9E579
  33. Heins MJ, Korevaar JC, Knottnerus BJ, Hooiveld M. Vaccine Coverage Dutch National Influenza Prevention Program 2021: brief monitor. Utrecht: Nivel; 2022. Available from: https://www.nivel.nl/sites/default/files/bestanden/1004308.pdf
  34. Faber R, Hamersma M, De Haas M, Krabbenborg L, ’t Hoen A. Estimating post-pandemic effects of working from home and teleconferencing on travel behaviour. Eur J Transp Infrastruct Res. 2023;23(1):33-62.  https://doi.org/10.18757/ejtir.2023.23.1.6733 
  35. Ministry of Social Affairs and Employment. Arbotrends 2022: minder thuiswerken en meer ziekteverzuim. [Arbotrends 2022: less teleworking and more absenteeism]. The Hague: Ministry of Social Affairs and Employment: 2023. Dutch. Available from: https://www.arboportaal.nl/actueel/nieuws/2023/05/02/arbotrends-2022-minder-thuiswerken-en-meer-ziekteverzuim
  36. Manna A, Koltai J, Karsai M. Importance of social inequalities to contact patterns, vaccine uptake, and epidemic dynamics. Nat Commun. 2024;15(1):4137.  https://doi.org/10.1038/s41467-024-48332-y  PMID: 38755162 
  37. Jarvis CI, Coletti P, Backer JA, Munday JD, Faes C, Beutels P, et al. Social contact patterns following the COVID-19 pandemic: a snapshot of post-pandemic behaviour from the CoMix study. Epidemics. 2024;48:100778.  https://doi.org/10.1016/j.epidem.2024.100778  PMID: 38964131 
  38. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5(3):e74.  https://doi.org/10.1371/journal.pmed.0050074  PMID: 18366252 
  39. Wong KLM, Gimma A, Coletti P, Faes C, Beutels P, Hens N, et al. Social contact patterns during the COVID-19 pandemic in 21 European countries - evidence from a two-year study. BMC Infect Dis. 2023;23(1):268.  https://doi.org/10.1186/s12879-023-08214-y  PMID: 37101123 
  40. Geubbels ELPE, Backer JA, Bakhshi-Raiez F, van der Beek RFHJ, van Benthem BHB, van den Boogaard J, et al. The daily updated Dutch national database on COVID-19 epidemiology, vaccination and sewage surveillance. Sci Data. 2023;10(1):469.  https://doi.org/10.1038/s41597-023-02232-w  PMID: 37474530 
  41. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav. 2021;5(4):529-38.  https://doi.org/10.1038/s41562-021-01079-8  PMID: 33686204 
/content/10.2807/1560-7917.ES.2024.29.43.2400143
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error