1887
Research Open Access
Like 0

Abstract

Background

The PCR quantification cycle (C) is a proxy measure of the viral load of a SARS-CoV-2-infected individual.

Aim

To investigate if C values vary according to different population characteristics, in particular demographic ones, and within the COVID-19 pandemic context, notably the SARS-CoV-2 type/variant individuals get infected with.

Methods

We considered all positive PCR results from Cheshire and Merseyside, England, between 6 November 2020 and 8 September 2021. C distributions were inspected with Kernel density estimates. Multivariable quantile regression models assessed associations between people’s features and C.

Results

We report C values for 188,821 SARS-CoV-2 positive individuals. Median Cs increased with decreasing age for suspected wild-type virus and Alpha variant infections, but less so, if not, for Delta. For example, compared to 30–39-year-olds (median age group), 5–11-year-olds exhibited 1.8 (95% CI: 1.5 to 2.1), 2.2 (95% CI: 1.8 to 2.6) and 0.8 (95% CI: 0.6 to 0.9) higher median Cs for suspected wild-type, Alpha and Delta positives, respectively, in multivariable analysis. 12–18-year-olds also had higher Cs for wild-type and Alpha positives, however, not for Delta. Overall, in univariable analysis, suspected Delta positives reported 2.8 lower median Cs than wild-type positives (95% CI: 2.7 to 2.8; p < 0.001). Suspected Alpha positives had 1.5 (95% CI: 1.4 to 1.5; p < 0.001) lower median Cs than wild type.

Conclusions

Wild-type- or Alpha-infected school-aged children (5–11-year-olds) might transmit less than adults (> 18 years old), but have greater mixing exposures. Smaller differences in viral loads with age occurred in suspected Delta infections. Suspected-Alpha- or Delta-infections involved higher viral loads than wild type, suggesting increased transmission risk. COVID-19 control strategies should consider age and dominant variant.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.4.2200129
2023-01-26
2024-12-26
/content/10.2807/1560-7917.ES.2023.28.4.2200129
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/4/eurosurv-28-4-3.html?itemId=/content/10.2807/1560-7917.ES.2023.28.4.2200129&mimeType=html&fmt=ahah

References

  1. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021;2(1):e13-22.  https://doi.org/10.1016/S2666-5247(20)30172-5  PMID: 33521734 
  2. Dahdouh E, Lázaro-Perona F, Romero-Gómez MP, Mingorance J, García-Rodriguez J. Ct values from SARS-CoV-2 diagnostic PCR assays should not be used as direct estimates of viral load. J Infect. 2021;82(3):414-51.  https://doi.org/10.1016/j.jinf.2020.10.017  PMID: 33131699 
  3. Jefferson T, Spencer E, Brassey J, Heneghan C. Viral cultures for COVID-19 infectivity assessment. Systematic review. MedRxiv. 2020 . https://doi.org/10.1101/2020.08.04.20167932 
  4. Tom MR, Mina MJ. To interpret the SARS-CoV-2 test, consider the cycle threshold value. Clin Infect Dis. 2020;71(16):2252-4.  https://doi.org/10.1093/cid/ciaa619  PMID: 32435816 
  5. Rhoads D, Peaper DR, She RC, Nolte FS, Wojewoda CM, Anderson NW, et al. College of American Pathologists (CAP) microbiology committee perspective: caution must be used in interpreting the cycle threshold (Ct) value. Clin Infect Dis. 2021;72(10):e685-6.  https://doi.org/10.1093/cid/ciaa1199  PMID: 32785682 
  6. Ke R, Martinez PP, Smith RL, Gibson LL, Mirza A, Conte M, et al. Daily sampling of early SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness. medRxiv. 2021:2021.07.12.21260208 . https://doi.org/10.1101/2021.07.12.21260208 
  7. Chen PZ, Bobrovitz N, Premji Z, Koopmans M, Fisman DN, Gu FX. Heterogeneity in transmissibility and shedding SARS-CoV-2 via droplets and aerosols. eLife. 2021;10:e65774.  https://doi.org/10.7554/eLife.65774  PMID: 33861198 
  8. Lee LYW, Rozmanowski S, Pang M, Charlett A, Anderson C, Hughes GJ, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infectivity by viral load, S gene variants and demographic factors and the utility of lateral flow devices to prevent transmission. Clin Infect Dis. 2022;74(3):407-15.  https://doi.org/10.1093/cid/ciab421  PMID: 33972994 
  9. Marks M, Millat-Martinez P, Ouchi D, Roberts CH, Alemany A, Corbacho-Monné M, et al. Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study. Lancet Infect Dis. 2021;21(5):629-36.  https://doi.org/10.1016/S1473-3099(20)30985-3  PMID: 33545090 
  10. Euser S, Aronson S, Manders I, van Lelyveld S, Herpers B, Sinnige J, et al. SARS-CoV-2 viral-load distribution reveals that viral loads increase with age: a retrospective cross-sectional cohort study. Int J Epidemiol. 2022;50(6):1795-803.  https://doi.org/10.1093/ije/dyab145  PMID: 34999848 
  11. Jacot D, Greub G, Jaton K, Opota O. Viral load of SARS-CoV-2 across patients and compared to other respiratory viruses. Microbes Infect. 2020;22(10):617-21.  https://doi.org/10.1016/j.micinf.2020.08.004  PMID: 32911086 
  12. Jones TC, Biele G, Mühlemann B, Veith T, Schneider J, Beheim-Schwarzbach J, et al. Estimating infectiousness throughout SARS-CoV-2 infection course. Science. 2021;373(6551):eabi5273.  https://doi.org/10.1126/science.abi5273  PMID: 34035154 
  13. Chia PY, Ong SWX, Chiew CJ, Ang LW, Chavatte J-M, Mak T-M, et al. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine breakthrough infections: a multicentre cohort study. Clin Microbiol Infect. 2022;28(4):612.e1-7.  https://doi.org/10.1016/j.cmi.2021.11.010  PMID: 34826623 
  14. Ong SWX, Chiew CJ, Ang LW, Mak TM, Cui L, Toh MPHS, et al. Clinical and virological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern: a retrospective cohort study comparing B. 1.1. 7 (Alpha), B. 1.351 (Beta), and B. 1.617. 2 (Delta). Clin Infect Dis. 2022;75(1):e1128-36.  https://doi.org/10.1093/cid/ciab721  PMID: 34423834 
  15. García-Fiñana M, Hughes DM, Cheyne CP, Burnside G, Stockbridge M, Fowler TA, et al. Performance of the Innova SARS-CoV-2 antigen rapid lateral flow test in the Liverpool asymptomatic testing pilot: population based cohort study. BMJ. 2021;374(1637):n1637.  https://doi.org/10.1136/bmj.n1637  PMID: 34230058 
  16. Green MA, García-Fiñana M, Barr B, Burnside G, Cheyne CP, Hughes D, et al. Evaluating social and spatial inequalities of large scale rapid lateral flow SARS-CoV-2 antigen testing in COVID-19 management: An observational study of Liverpool, UK (November 2020 to January 2021). Lancet Reg Health Eur. 2021;6:100107.  https://doi.org/10.1016/j.lanepe.2021.100107  PMID: 34002172 
  17. Four-tier coronavirus alert levels: Tier 1, 2, 3 and 4 rules explained. 2021. Available at: https://www.ageuk.org.uk/information-advice/health-wellbeing/conditions-illnesses/coronavirus-guidance/local-lockdown-tiers/
  18. Green MA, Hungerford DJ, Hughes DM, Garcia-Fiñana M, Turtle L, Cheyne C, et al. Changing patterns of SARS-CoV-2 infection through Delta and Omicron waves by vaccination status, previous infection and neighbourhood deprivation: a cohort analysis of 2.7 M people. BMC Infect Dis. 2022;22(1):889.  https://doi.org/10.1186/s12879-022-07878-2  PMID: 36435775 
  19. Pouwels KB, Pritchard E, Matthews P, Stoesser NB, Eyre DW, Vihta K-D, et al. Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. medRxiv. 2021 . https://doi.org/10.1101/2021.08.18.21262237 
  20. Walker AS, Vihta KD, Gethings O, Pritchard E, Jones J, House T, et al. Increased infections, but not viral burden, with a new SARS-CoV-2 variant. medRxiv. 2021 . https://doi.org/10.1101/2021.01.13.21249721 
  21. Public Health England (PHE). SARS-CoV-2 variants of concern and variants under investigation in England. Technical Briefing Documents. London: PHE; 2021;15.
  22. Walker AS, Pritchard E, House T, Robotham JV, Birrell PJ, Bell I, et al. Ct threshold values, a proxy for viral load in community SARS-CoV-2 cases, demonstrate wide variation across populations and over time. medRxiv. 2021:2020.10. 25.20219048.
  23. Wand M, Ripley B. KernSmooth: Functions for kernel smoothing for Wand and Jones (1995). R package version 2.23-10. 2013.
  24. Held L. A discussion and reanalysis of the results reported in Jones et al.(2020). Reference Source. 2020.
  25. Hay JA, Kennedy-Shaffer L, Kanjilal S, Lennon NJ, Gabriel SB, Lipsitch M, et al. Estimating epidemiologic dynamics from cross-sectional viral load distributions. Science. 2021;373(6552):eabh0635.  https://doi.org/10.1126/science.abh0635  PMID: 34083451 
  26. Accorsi EK, Qiu X, Rumpler E, Kennedy-Shaffer L, Kahn R, Joshi K, et al. How to detect and reduce potential sources of biases in studies of SARS-CoV-2 and COVID-19. Eur J Epidemiol. 2021;36(2):179-96.  https://doi.org/10.1007/s10654-021-00727-7  PMID: 33634345 
  27. Crozier A, Dunning J, Rajan S, Semple MG, Buchan IE. Could expanding the covid-19 case definition improve the UK’s pandemic response? BMJ. 2021;374:n1625.  https://doi.org/10.1136/bmj.n1625  PMID: 34193527 
  28. University of Oxford SARS-CoV-2 test development and validation cell. Preliminary report from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test development and validation cell: Rapid evaluation of Lateral Flow Viral Antigen detection devices (LFDs) for mass community testing; 2020.
/content/10.2807/1560-7917.ES.2023.28.4.2200129
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error