1887
Rapid communication Open Access
Like 0

Abstract

From September to October 2019, seven patients colonised or infected with a ceftazidime-avibactam (CZA)-resistant carbapenemase (KPC)-2-producing were detected in two intensive care units of a Greek general hospital. The outbreak strain was sequence type (ST)147 and co-produced KPC-2 and the novel plasmid-borne Vietnamese extended-spectrum β-lactamase (VEB)-25 harbouring a K234R substitution associated with CZA resistance. Epidemiological investigations revealed that the resistance was probably acquired by horizontal transmission independently from previous CZA exposure.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2020.25.3.2000028
2020-01-23
2024-12-21
/content/10.2807/1560-7917.ES.2020.25.3.2000028
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/25/3/eurosurv-25-3-3.html?itemId=/content/10.2807/1560-7917.ES.2020.25.3.2000028&mimeType=html&fmt=ahah

References

  1. Karaiskos I, Galani I, Souli M, Giamarellou H. Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin Drug Metab Toxicol. 2019;15(2):133-49.  https://doi.org/10.1080/17425255.2019.1563071  PMID: 30626244 
  2. Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrob Agents Chemother. 2017;61(3):e02097-16.  https://doi.org/10.1128/AAC.02097-16  PMID: 28031201 
  3. Giddins MJ, Macesic N, Annavajhala MK, Stump S, Khan S, McConville TH, et al. Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother. 2018;62(3):e02101-17. PMID: 29263067 
  4. Both A, Büttner H, Huang J, Perbandt M, Belmar Campos C, Christner M, et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J Antimicrob Chemother. 2017;72(9):2483-8.  https://doi.org/10.1093/jac/dkx179  PMID: 28637339 
  5. Voulgari E, Kotsakis SD, Giannopoulou P, Perivolioti E, Tzouvelekis LS, Miriagou V. Detection in two hospitals of transferable ceftazidime-avibactam resistance in Klebsiella pneumoniae due to a novel VEB β-lactamase variant with a Lys234Arg substitution, Greece, 2019. Euro Surveill. 2020;25(2):1900766.  https://doi.org/10.2807/1560-7917.ES.2020.25.2.1900766 
  6. European Centre for Disease Prevention and Control (ECDC). Emergence of resistance to ceftazidime-avibactam in carbapenem-resistant Enterobacteriaceae – 12 June 2018. Stockholm; ECDC; 2018. Available from: https://ecdc.europa.eu/en/publications-data/rapid-risk-assessment-emergenceresistance-ceftazidime-avibactam-carbapenem
  7. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. Växjö: EUCAST; 2019. Available from; http://www.eucast.org.
  8. Galani I, Karaiskos I, Karantani I, Papoutsaki V, Maraki S, Papaioannou V, et al. , On Behalf Of The Study Collaborators. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Euro Surveill. 2018;23(31):1700775.  https://doi.org/10.2807/1560-7917.ES.2018.23.30.1700775  PMID: 30086819 
  9. Lahiri SD, Alm RA. Identification of Novel VEB β-Lactamase Enzymes and Their Impact on Avibactam Inhibition. Antimicrob Agents Chemother. 2016;60(5):3183-6.  https://doi.org/10.1128/AAC.00047-16  PMID: 26926646 
  10. Galani I, Antoniadou A, Karaiskos I, Kontopoulou K, Giamarellou H, Souli M. Genomic characterization of a KPC-23-producing Klebsiella pneumoniae ST258 clinical isolate resistant to ceftazidime-avibactam. Clin Microbiol Infect. 2019;25(6):763.e5-8.  https://doi.org/10.1016/j.cmi.2019.03.011  PMID: 30928562 
  11. Papagiannitsis CC, Giakkoupi P, Kotsakis SD, Tzelepi E, Tzouvelekis LS, Vatopoulos AC, et al. OmpK35 and OmpK36 porin variants associated with specific sequence types of Klebsiella pneumoniae. J Chemother. 2013;25(4):250-4.  https://doi.org/10.1179/1973947813Y.0000000075  PMID: 23906079 
  12. Pagès JM, Peslier S, Keating TA, Lavigne JP, Nichols WW. Role of the Outer Membrane and Porins in Susceptibility of β-Lactamase-Producing Enterobacteriaceae to Ceftazidime-Avibactam. Antimicrob Agents Chemother. 2016;60(3):1349-59.  https://doi.org/10.1128/AAC.01585-15  PMID: 26666933 
  13. Mikhail S, Singh NB, Kebriaei R, Rice SA, Stamper KC, Castanheira M, et al. Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63(8):e00779-19.  https://doi.org/10.1128/AAC.00779-19  PMID: 31182535 
  14. Gaibani P, Lewis RE, Volpe SL, Giannella M, Campoli C, Landini MP, et al. In vitro interaction of ceftazidime-avibactam in combination with different antimicrobials against KPC-producing Klebsiella pneumoniae clinical isolates. Int J Infect Dis. 2017;65:1-3.  https://doi.org/10.1016/j.ijid.2017.09.017  PMID: 28951106 
  15. Marshall S, Hujer AM, Rojas LJ, Papp-Wallace KM, Humphries RM, Spellberg B, et al. Can Ceftazidime-Avibactam and Aztreonam Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae? Antimicrob Agents Chemother. 2017;61(4):e02243-16.  https://doi.org/10.1128/AAC.02243-16  PMID: 28167541 
  16. Papp-Wallace KM, Winkler ML, Taracila MA, Bonomo RA. Variants of β-lactamase KPC-2 that are resistant to inhibition by avibactam. Antimicrob Agents Chemother. 2015;59(7):3710-7.  https://doi.org/10.1128/AAC.04406-14  PMID: 25666153 
  17. Dubois V, Poirel L, Demarthe F, Arpin C, Coulange L, Minarini LA, et al. Molecular and biochemical characterization of SHV-56, a novel inhibitor-resistant beta-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother. 2008;52(10):3792-4.  https://doi.org/10.1128/AAC.00387-08  PMID: 18663019 
  18. Mendonça N, Manageiro V, Robin F, Salgado MJ, Ferreira E, Caniça M, et al. The Lys234Arg substitution in the enzyme SHV-72 is a determinant for resistance to clavulanic acid inhibition. Antimicrob Agents Chemother. 2008;52(5):1806-11.  https://doi.org/10.1128/AAC.01381-07  PMID: 18316518 
  19. Mendonça N, Ferreira E, Louro D, Caniça M, Caniça M, ARSIP Participants. Molecular epidemiology and antimicrobial susceptibility of extended- and broad-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated in Portugal. Int J Antimicrob Agents. 2009;34(1):29-37.  https://doi.org/10.1016/j.ijantimicag.2008.11.014  PMID: 19272757 
  20. Manageiro V, Ferreira E, Albuquerque L, Bonnet R, Caniça M. Biochemical study of a new inhibitor-resistant beta-lactamase, SHV-84, produced by a clinical Escherichia coli strain. Antimicrob Agents Chemother. 2010;54(5):2271-2.  https://doi.org/10.1128/AAC.01442-09  PMID: 20211886 
  21. Galani I, Nafplioti K, Adamou P, Karaiskos I, Giamarellou H, Souli M, Study Collaborators. Nationwide epidemiology of carbapenem resistant Klebsiella pneumoniae isolates from Greek hospitals, with regards to plazomicin and aminoglycoside resistance. BMC Infect Dis. 2019;19(1):167.  https://doi.org/10.1186/s12879-019-3801-1  PMID: 30770727 
/content/10.2807/1560-7917.ES.2020.25.3.2000028
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error