- Home
- Eurosurveillance
- Previous Issues
- Volume 25, Issue 3, 23/Jan/2020
Eurosurveillance - Volume 25, Issue 3, 23 January 2020
Volume 25, Issue 3, 2020
- Editorial
- Rapid communication
-
-
-
Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020
A novel coronavirus (2019-nCoV) causing severe acute respiratory disease emerged recently in Wuhan, China. Information on reported cases strongly indicates human-to-human spread, and the most recent information is increasingly indicative of sustained human-to-human transmission. While the overall severity profile among cases may change as more mild cases are identified, we estimate a risk of fatality among hospitalised cases at 14% (95% confidence interval: 3.9–32%).
-
-
-
Outbreak of KPC-2-producing Klebsiella pneumoniae endowed with ceftazidime-avibactam resistance mediated through a VEB-1-mutant (VEB-25), Greece, September to October 2019
From September to October 2019, seven patients colonised or infected with a ceftazidime-avibactam (CZA)-resistant Klebsiella pneumoniae carbapenemase (KPC)-2-producing K. pneumoniae were detected in two intensive care units of a Greek general hospital. The outbreak strain was sequence type (ST)147 and co-produced KPC-2 and the novel plasmid-borne Vietnamese extended-spectrum β-lactamase (VEB)-25 harbouring a K234R substitution associated with CZA resistance. Epidemiological investigations revealed that the resistance was probably acquired by horizontal transmission independently from previous CZA exposure.
-
-
-
Pre-emptive genomic surveillance of emerging ebolaviruses
Genomic surveillance during ebolavirus outbreaks to elucidate transmission chains and develop diagnostic tests is delayed by the laborious development of variant-specific laboratory assays. We developed a new protocol combining 31 parallel PCR assays with Illumina/MinION-based sequencing, allowing generic ebolavirus genomic surveillance, validated using cell culture-derived Ebola, Reston, Sudan and Taï Forest virus at concentrations compatible with patient viral loads. Our approach enables pre-emptive genomic surveillance of ongoing and future ebolavirus outbreaks irrespective of variant divergence.
-
- Top
-
- Research
-
-
-
Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
Victor M Corman , Olfert Landt , Marco Kaiser , Richard Molenkamp , Adam Meijer , Daniel KW Chu , Tobias Bleicker , Sebastian Brünink , Julia Schneider , Marie Luisa Schmidt , Daphne GJC Mulders , Bart L Haagmans , Bas van der Veer , Sharon van den Brink , Lisa Wijsman , Gabriel Goderski , Jean-Louis Romette , Joanna Ellis , Maria Zambon , Malik Peiris , Herman Goossens , Chantal Reusken , Marion PG Koopmans and Christian DrostenBackgroundThe ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur.
AimWe aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available.
MethodsHere we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.
ResultsThe workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project.
ConclusionThe present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.
-
- Top
-
- Outbreaks
-
-
-
Measles recognition during measles outbreak at a paediatric university hospital, Austria, January to February 2017
Recognition of measles is crucial to prevent transmissions in the hospital settings. Little is known about the level of recognition of measles and possible causes of not recognising the disease by physicians in the post-vaccine era. We report on a measles outbreak in a paediatric hospital in Austria in January to February 2017 with strikingly high numbers of not recognised cases. The extent and course of the outbreak were assessed via retrospective case finding. Thirteen confirmed measles cases were identified, two with atypical clinical picture. Of eight cases with no known epidemiological link, only one was diagnosed immediately; four were recognised with delay and three only retrospectively. Eleven typical measles cases had four ‘unrecognised visits’ to the outpatient clinic and 28 on the ward. Two atypical cases had two ‘unrecognised visits’ to the outpatient clinic and 19 on the ward.
Thirteen clinicians did not recognise typical measles (atypical cases not included). Twelve of 23 physicians involved had never encountered a patient with measles before. The direct and indirect costs related to the outbreak were calculated to be over EUR 80,000. Our findings suggest the need to establish regular training programmes about measles, including diagnostic pitfalls in paediatric hospitals.
-
-
Volumes & issues
-
Volume 29 (2024)
-
Volume 28 (2023)
-
Volume 27 (2022)
-
Volume 26 (2021)
-
Volume 25 (2020)
-
Volume 24 (2019)
-
Volume 23 (2018)
-
Volume 22 (2017)
-
Volume 21 (2016)
-
Volume 20 (2015)
-
Volume 19 (2014)
-
Volume 18 (2013)
-
Volume 17 (2012)
-
Volume 16 (2011)
-
Volume 15 (2010)
-
Volume 14 (2009)
-
Volume 13 (2008)
-
Volume 12 (2007)
-
Volume 11 (2006)
-
Volume 10 (2005)
-
Volume 9 (2004)
-
Volume 8 (2003)
-
Volume 7 (2002)
-
Volume 6 (2001)
-
Volume 5 (2000)
-
Volume 4 (1999)
-
Volume 3 (1998)
-
Volume 2 (1997)
-
Volume 1 (1996)
-
Volume 0 (1995)
Most Read This Month
-
-
Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
Victor M Corman , Olfert Landt , Marco Kaiser , Richard Molenkamp , Adam Meijer , Daniel KW Chu , Tobias Bleicker , Sebastian Brünink , Julia Schneider , Marie Luisa Schmidt , Daphne GJC Mulders , Bart L Haagmans , Bas van der Veer , Sharon van den Brink , Lisa Wijsman , Gabriel Goderski , Jean-Louis Romette , Joanna Ellis , Maria Zambon , Malik Peiris , Herman Goossens , Chantal Reusken , Marion PG Koopmans and Christian Drosten
-
- More Less