1887
Research Open Access
Like 0

Abstract

Introduction

Despite vaccine availability, rotavirus persists as a leading cause of gastroenteritis in children younger than 5 years.

Aim

We aimed to evaluate temporal changes in rotavirus epidemiology in Belgium between 2009 and 2023, including the period of the COVID-19 pandemic.

Methods

We collected 8,024 rotavirus-positive stool samples throughout Belgium. For 6,352 samples, we determined the G and/or P genotypes through sequencing of the genes encoding the outer capsid proteins VP7 and VP4.

Results

Before the COVID-19pandemic, we received on average 622 samples per rotavirus epidemiological year, which decreased to 114 and 111 samples during the two pandemic rotavirus epidemiological years, followed by a peak of 1,048 samples in the first post-pandemic year. Notably, the proportion of cases in the age group 2–5-years increased from 20.3% before to 33% after the pandemic (p < 0.001). Over the 14-year study period, the most common genotypes were G2P[4], G3P[8] and G9P[8]. Post-pandemic data show an unusually strong dominance of the equine-like G3P[8] genotype which carried a DS-1-like genotype constellation in the period 2021 to 2023. Additionally, vaccinated individuals were significantly overrepresented among patients infected with the equine-like VP7 carrying G3P[8] rotavirus compared with other genotypes, including typical human VP7 G3P[8].

Conclusion

Despite the presence of typical yearly genotype fluctuations, several epidemiological changes were associated with the COVID-19 pandemic, including the unusual dominance of an emerging rotavirus strain against which current vaccines may be less effective. It is essential to closely monitor this strain to determine if the phenomenon is temporary.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.12.2400442
2025-03-27
2025-04-01
/content/10.2807/1560-7917.ES.2025.30.12.2400442
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/12/eurosurv-30-12-3.html?itemId=/content/10.2807/1560-7917.ES.2025.30.12.2400442&mimeType=html&fmt=ahah

References

  1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117-71.  https://doi.org/10.1016/S0140-6736(14)61682-2  PMID: 25530442 
  2. Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee MJ, Black RE. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One. 2013;8(9):e72788. PMID: 24023773 
  3. Hallowell BD, Chavers T, Parashar U, Tate JE. Global estimates of rotavirus hospitalizations among children below 5 years in 2019 and current and projected impacts of rotavirus vaccination. J Pediatric Infect Dis Soc. 2022;11(4):149-58.  https://doi.org/10.1093/jpids/piab114  PMID: 34904636 
  4. Ray PG, Kelkar SD. Prevalence of neutralizing antibodies against different rotavirus serotypes in children with severe rotavirus-induced diarrhea and their mothers. Clin Diagn Lab Immunol. 2004;11(1):186-94. PMID: 14715567 
  5. Zeller M, Rahman M, Heylen E, De Coster S, De Vos S, Arijs I, et al. Rotavirus incidence and genotype distribution before and after national rotavirus vaccine introduction in Belgium. Vaccine. 2010;28(47):7507-13.  https://doi.org/10.1016/j.vaccine.2010.09.004  PMID: 20851085 
  6. Gurgel RQ, Cunliffe NA, Nakagomi O, Cuevas LE. Rotavirus genotypes circulating in Brazil before national rotavirus vaccination: a review. J Clin Virol. 2008;43(1):1-8.  https://doi.org/10.1016/j.jcv.2008.04.010  PMID: 18567534 
  7. Keating GM. Rotavirus vaccine (RotaTeq). Paediatr Drugs. 2006;8(3):197-202, discussion 203-4.  https://doi.org/10.2165/00148581-200608030-00008  PMID: 16774301 
  8. Bernstein DI, Ward RL. Rotarix: development of a live attenuated monovalent human rotavirus vaccine. Pediatr Ann. 2006;35(1):38-43.  https://doi.org/10.3928/0090-4481-20060101-12  PMID: 16466074 
  9. Bibera GL, Chen J, Pereira P, Benninghoff B. Dynamics of G2P[4] strain evolution and rotavirus vaccination: A review of evidence for Rotarix. Vaccine. 2020;38(35):5591-600.  https://doi.org/10.1016/j.vaccine.2020.06.059  PMID: 32651115 
  10. Roczo-Farkas S, Kirkwood CD, Cowley D, Barnes GL, Bishop RF, Bogdanovic-Sakran N, et al. The impact of rotavirus vaccines on genotype diversity: a comprehensive analysis of 2 decades of Australian surveillance data. J Infect Dis. 2018;218(4):546-54. PMID: 29790933 
  11. Matthijnssens J, Bilcke J, Ciarlet M, Martella V, Bányai K, Rahman M, et al. Rotavirus disease and vaccination: impact on genotype diversity. Future Microbiol. 2009;4(10):1303-16.  https://doi.org/10.2217/fmb.09.96  PMID: 19995190 
  12. Degiuseppe JI, Stupka JA. Genotype distribution of Group A rotavirus in children before and after massive vaccination in Latin America and the Caribbean: Systematic review. Vaccine. 2020;38(4):733-40.  https://doi.org/10.1016/j.vaccine.2019.11.017  PMID: 31771863 
  13. Mwanga MJ, Owor BE, Ochieng JB, Ngama MH, Ogwel B, Onyango C, et al. Rotavirus group A genotype circulation patterns across Kenya before and after nationwide vaccine introduction, 2010-2018. BMC Infect Dis. 2020;20(1):504.  https://doi.org/10.1186/s12879-020-05230-0  PMID: 32660437 
  14. Santos VS, Nóbrega FA, Soares MWS, Moreira RD, Cuevas LE, Gurgel RQ. Rotavirus genotypes circulating in Brazil before and after the national rotavirus vaccine program: a review. Pediatr Infect Dis J. 2018;37(3):e63-5.  https://doi.org/10.1097/INF.0000000000001770  PMID: 29189673 
  15. Matthijnssens J, Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol. 2012;2(4):426-33.  https://doi.org/10.1016/j.coviro.2012.04.007  PMID: 22683209 
  16. Doan YH, Dennis FE, Takemae N, Haga K, Shimizu H, Appiah MG, et al. Emergence of intergenogroup reassortant G9P[4] strains following rotavirus vaccine introduction in Ghana. Viruses. 2023;15(12):2453.  https://doi.org/10.3390/v15122453  PMID: 38140694 
  17. Khakha SA, Varghese T, Giri S, Durbin A, Tan GS, Kalaivanan M, et al. Whole-genome characterization of common rotavirus strains circulating in Vellore, India from 2002 to 2017: emergence of non-classical genomic constellations. Gut Pathog. 2023;15(1):44.  https://doi.org/10.1186/s13099-023-00569-6  PMID: 37730725 
  18. McDonald SM, McKell AO, Rippinger CM, McAllen JK, Akopov A, Kirkness EF, et al. Diversity and relationships of cocirculating modern human rotaviruses revealed using large-scale comparative genomics. J Virol. 2012;86(17):9148-62.  https://doi.org/10.1128/JVI.01105-12  PMID: 22696651 
  19. Zeller M, Donato C, Trovão NS, Cowley D, Heylen E, Donker NC, et al. Genome-wide evolutionary analyses of G1P[8] strains isolated before and after rotavirus vaccine introduction. Genome Biol Evol. 2015;7(9):2473-83.  https://doi.org/10.1093/gbe/evv157  PMID: 26254487 
  20. Agbla JM, Esona MD, Jaimes J, Gautam R, Agbankpé AJ, Katz E, et al. Whole genome analysis of rotavirus strains circulating in Benin before vaccine introduction, 2016-2018. Virus Res. 2022;313:198715.  https://doi.org/10.1016/j.virusres.2022.198715  PMID: 35247484 
  21. Simsek C, Bloemen M, Jansen D, Beller L, Descheemaeker P, Reynders M, et al. High prevalence of coinfecting enteropathogens in suspected rotavirus vaccine breakthrough cases. J Clin Microbiol. 2021;59(12):e0123621.  https://doi.org/10.1128/JCM.01236-21  PMID: 34586890 
  22. Cowley D, Donato CM, Roczo-Farkas S, Kirkwood CD. Emergence of a novel equine-like G3P[8] inter-genogroup reassortant rotavirus strain associated with gastroenteritis in Australian children. J Gen Virol. 2016;97(2):403-10.  https://doi.org/10.1099/jgv.0.000352  PMID: 26588920 
  23. Walker JL, Andrews NJ, Atchison CJ, Collins S, Allen DJ, Ramsay ME, et al. Effectiveness of oral rotavirus vaccination in England against rotavirus-confirmed and all-cause acute gastroenteritis. Vaccine X. 2019;1:100005.  https://doi.org/10.1016/j.jvacx.2019.100005  PMID: 31384727 
  24. Amin AB, Tate JE, Waller LA, Lash TL, Lopman BA. Monovalent rotavirus vaccine efficacy against different rotavirus genotypes: a pooled analysis of phase II and III trial data. Clin Infect Dis. 2023;76(3):e1150-6.  https://doi.org/10.1093/cid/ciac699  PMID: 36031386 
  25. Ullrich A, Schranz M, Rexroth U, Hamouda O, Schaade L, Diercke M, et al. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1-2016 - week 32-2020. Lancet Reg Health Eur. 2021;6:100103.  https://doi.org/10.1016/j.lanepe.2021.100103  PMID: 34557831 
  26. Higurashi T, Tamura S, Misawa N, Horita N. Trends in gastrointestinal infections during the COVID-19 pandemic and concerns of post-pandemic resurgence in Japan. Diseases. 2023;12(1):4.  https://doi.org/10.3390/diseases12010004  PMID: 38275566 
  27. Cohen R, Ashman M, Taha MK, Varon E, Angoulvant F, Levy C, et al. Pediatric Infectious Disease Group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap? Infect Dis Now. 2021;51(5):418-23.  https://doi.org/10.1016/j.idnow.2021.05.004  PMID: 33991720 
  28. Mathieu E, Ritchie H, Rodes-Guirao L, Appel C, Giattino C, Hasell J, et al. Administrative units - situation on January 1sthttps://www.geo.be/catalog/details/629ad470-71dc-11eb-af47-3448ed25ad7c?l=en. Oxford: Our World in Data. [Accessed: 14 Jun 2024]. Available from: https://www.geo.be/catalog/details/629ad470-71dc-11eb-af47-3448ed25ad7c?l=en
  29. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav. 2021;5(4):529-38.  https://doi.org/10.1038/s41562-021-01079-8  PMID: 33686204 
  30. geo.be. Geoportal of the Belgian federal institutions. Brussels: National Geographic Institute (Belgium). [Accessed: 1 Mar 2024]. Available from: https://www.geo.be/home?l=en
  31. Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, et al. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol. 1992;30(6):1365-73.  https://doi.org/10.1128/jcm.30.6.1365-1373.1992  PMID: 1320625 
  32. Conceição-Neto N, Zeller M, Lefrère H, De Bruyn P, Beller L, Deboutte W, et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Sci Rep. 2015;5(October):16532.  https://doi.org/10.1038/srep16532  PMID: 26559140 
  33. De Coninck L, Faye L, Basler N, Jansen D, van Espen L. ViPER. Zenodo. [Accessed: 26 Sep 2023]. Available from: https://zenodo.org/record/5502203
  34. Hibiya K, Iwata H, Kinjo T, Shinzato A, Tateyama M, Ueda S, et al. Incidence of common infectious diseases in Japan during the COVID-19 pandemic. PLoS One. 2022;17(1):e0261332. . Available from: https://pubmed.ncbi.nlm.nih.gov/35020724/ https://doi.org/10.1371/journal.pone.0261332  PMID: 35020724 
  35. Wang B, Gai X, Han Y, Liu Y, Zhang Y, Sun J, et al. Epidemiological characteristics of common respiratory infectious diseases in children before and during the COVID-19 epidemic. Front Pediatr. 2023;11:1212658.  https://doi.org/10.3389/fped.2023.1212658  PMID: 37601133 
  36. Shaw D, Abad R, Amin-Chowdhury Z, Bautista A, Bennett D, Broughton K, et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium. Lancet Digit Health. 2023;5(9):e582-93.  https://doi.org/10.1016/S2589-7500(23)00108-5  PMID: 37516557 
  37. European Centre for Disease Prevention and Control (ECDC). Expert opinion on rotavirus vaccination in infancy. Stockholm: ECDC; 2017. Available from: https://data.europa.eu/doi/10.2900/362947
  38. van der Donck I, van Hoovels L, de Leener K, Goegebuer T, Vanderwegen L, Frans J, et al. Seizoensgebonden diarree door rotavirussen in België gedurende 1981-2002. [Severe diarrhoea due to rotavirus infection in a Belgian hospital 1981-2002]. Acta Clin Belg. 2003;58(1):12-8. Dutch.  https://doi.org/10.1179/acb.2003.58.1.002  PMID: 12723257 
  39. Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, World Health Organization–Coordinated Global Rotavirus Surveillance Network. Global, regional, and national estimates of Rotavirus mortality in children <5 years of age, 2000-2013. Clin Infect Dis. 2016;62(Suppl 2):S96-105.  https://doi.org/10.1093/cid/civ1013  PMID: 27059362 
  40. Arana A, Montes M, Jere KC, Alkorta M, Iturriza-Gómara M, Cilla G. Emergence and spread of G3P[8] rotaviruses possessing an equine-like VP7 and a DS-1-like genetic backbone in the Basque Country (North of Spain), 2015. Infect Genet Evol. 2016;44:137-44.  https://doi.org/10.1016/j.meegid.2016.06.048  PMID: 27370571 
  41. Gutierrez MB, Fialho AM, Maranhão AG, Malta FC, Andrade JDSR, Assis RMS, et al. Rotavirus A in Brazil: Molecular epidemiology and surveillance during 2018-2019. Pathogens. 2020;9(7):1-15.  https://doi.org/10.3390/pathogens9070515  PMID: 32605014 
  42. Bonura F, Bányai K, Mangiaracina L, Bonura C, Martella V, Giammanco GM, et al. Emergence in 2017-2019 of novel reassortant equine-like G3 rotavirus strains in Palermo, Sicily. Transbound Emerg Dis. 2022;69(2):813-35.  https://doi.org/10.1111/tbed.14054  PMID: 33905178 
  43. Tahar AS, Ong EJ, Rahardja A, Mamora D, Lim KT, Ahmed K, et al. Emergence of equine-like G3 and porcine-like G9 rotavirus strains in Sarawak, Malaysia: 2019-2021. J Med Virol. 2023;95(8):e28987.  https://doi.org/10.1002/jmv.28987  PMID: 37501648 
  44. Weldegebriel GG, Okot C, Majingo N, Oumer NJ, Mokomane M, Monyatsi NJ, et al. Resurgent rotavirus diarrhoea outbreak five years after introduction of rotavirus vaccine in Botswana, 2018. Vaccine. 2024;42(7):1534-41.  https://doi.org/10.1016/j.vaccine.2024.01.084  PMID: 38331661 
  45. Tacharoenmuang R, Komoto S, Guntapong R, Upachai S, Singchai P, Ide T, et al. High prevalence of equine-like G3P[8] rotavirus in children and adults with acute gastroenteritis in Thailand. J Med Virol. 2020;92(2):174-86.  https://doi.org/10.1002/jmv.25591  PMID: 31498444 
  46. Katz EM, Esona MD, Betrapally NS, De La Cruz De Leon LA, Neira YR, Rey GJ, et al. Whole-gene analysis of inter-genogroup reassortant rotaviruses from the Dominican Republic: Emergence of equine-like G3 strains and evidence of their reassortment with locally-circulating strains. Virology. 2019;534:114-31.  https://doi.org/10.1016/j.virol.2019.06.007  PMID: 31228725 
  47. Matthijnssens J, Nakagomi O, Kirkwood CD, Ciarlet M, Desselberger U, Van Ranst M. Group A rotavirus universal mass vaccination: how and to what extent will selective pressure influence prevalence of rotavirus genotypes? Expert Rev Vaccines. 2012;11(11):1347-54.  https://doi.org/10.1586/erv.12.105  PMID: 23249234 
  48. World Health Organization (WHO). Rotavirus vaccination coverage. Belgium. Geneva: WHO. [Accessed: 6 March 2025]. Available from: https://immunizationdata.who.int/global/wiise-detail-page/rotavirus-vaccination-coverage?CODE=BEL&ANTIGEN=ROTA1&YEAR=
/content/10.2807/1560-7917.ES.2025.30.12.2400442
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error