1887
Review Open Access
Like 0

Abstract

Background

Monoclonal antibodies (mAbs) and antiviral drugs have emerged as additional tools for treatment of COVID-19.

Aim

We aimed to review data on susceptibility of 14 SARS-CoV-2 variants to mAbs and antiviral drugs authorised in the European Union/European Economic Area (EU/EEA) countries.

Methods

We constructed a literature review compiling 298 publications from four databases: PubMed, Science Direct, LitCovid and BioRxiv/MedRxiv preprint servers. We included publications on nirmatrelvir and ritonavir, remdesivir and tixagevimab and cilgavimab, regdanvimab, casirivimab and imdevimab, and sotrovimab approved by the European Medicines Agency (EMA) by 1 October 2024.

Results

The mutations identified in the open reading frame (ORF)1ab, specifically nsp5:H172Y, nsp5:H172Y and Q189E, nsp5:L50F and E166V and nsp5:L50F, E166A and L167V, led to a decrease in susceptibility to nirmatrelvir and ritonavir, ranging from moderate (25-99) to high reductions (> 100). Casirivimab and imdevimab exhibited highly reduced neutralisation capacity across all Omicron sub-lineages. Sub-lineages BA.1, BA.2 and BA.5 had decreased susceptibility to regdanvimab, while sotrovimab showed decreased efficacy for BA.2, BA.4, BQ.1.1 and BA.2.86. Tixagevimab and cilgavimab exhibited highly reduced neutralisation activity against BQ.1, BQ.1.1, XBB, XBB.1.5 and BA.2.86 sub-lineages.

Conclusions

The emergence of new variants, some with altered antigenic characteristics, may lead to resistance against mAbs and/or antiviral drugs and evasion of immunity induced naturally or by vaccination. This summary of mutations, combination of mutations and SARS-CoV-2 variants linked to reduced susceptibility to mAbs and antiviral drugs, should aid the selection of appropriate treatment strategies and/or phasing out therapies that have lost their effectiveness.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.10.2400252
2025-03-13
2025-03-17
/content/10.2807/1560-7917.ES.2025.30.10.2400252
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/10/eurosurv-30-10-5.html?itemId=/content/10.2807/1560-7917.ES.2025.30.10.2400252&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). WHO COVID-19 dashboard. Geneva: WHO. [Accessed: 10 Mar 2025]. Available from: https://covid19.who.int
  2. Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, et al. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat. 2021;59:100794.  https://doi.org/10.1016/j.drup.2021.100794  PMID: 34991982 
  3. Zhou L, Ayeh SK, Chidambaram V, Karakousis PC. Modes of transmission of SARS-CoV-2 and evidence for preventive behavioral interventions. BMC Infect Dis. 2021;21(1):496.  https://doi.org/10.1186/s12879-021-06222-4  PMID: 34049515 
  4. Uddin M, Mustafa F, Rizvi TA, Loney T, Suwaidi HA, Al-Marzouqi AHH, et al. SARS-CoV-2/COVID-19: viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses. 2020;12(5):526.  https://doi.org/10.3390/v12050526  PMID: 32397688 
  5. European Centre for Disease Prevention and Control (ECDC). Case management and treatment of COVID-19. Stockholm: ECDC; 2023. Available from: https://www.ecdc.europa.eu/en/infectious-disease-topics/z-disease-list/covid-19/facts/case-management-and-treatment-covid-19
  6. Zhao L, Li S, Zhong W. Mechanism of action of small-molecule agents in ongoing clinical trials for SARS-CoV-2: a review. Front Pharmacol. 2022;13:840639.  https://doi.org/10.3389/fphar.2022.840639  PMID: 35281901 
  7. Hashemian SMR, Sheida A, Taghizadieh M, Memar MY, Hamblin MR, Bannazadeh Baghi H, et al. Paxlovid (Nirmatrelvir/Ritonavir): A new approach to Covid-19 therapy? Biomed Pharmacother. 2023;162:114367.  https://doi.org/10.1016/j.biopha.2023.114367  PMID: 37018987 
  8. Malin JJ, Suárez I, Priesner V, Fätkenheuer G, Rybniker J. Remdesivir against COVID-19 and other viral diseases. Clin Microbiol Rev. 2020;34(1):e00162-20.  https://doi.org/10.1128/CMR.00162-20  PMID: 33055231 
  9. Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol. 2021;21(6):382-93.  https://doi.org/10.1038/s41577-021-00542-x  PMID: 33875867 
  10. Cox M, Peacock TP, Harvey WT, Hughes J, Wright DW, Willett BJ, COVID-19 Genomics UK (COG-UK) Consortium, et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat Rev Microbiol. 2023;21(2):112-24.  https://doi.org/10.1038/s41579-022-00809-7  PMID: 36307535 
  11. Food and Drug Administration (FDA). Fact sheet for healthcare providers: emergency use authorization for Evusheld ™ (tixagevimab co-packaged with cilgavimab). Silver Spring: FDA; 2023. Revoked: 26 Jan 2023. Available from: https://www.fda.gov/media/154701/download
  12. Tegally H, Moir M, Everatt J, Giovanetti M, Scheepers C, Wilkinson E, et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat Med. 2022;28(9):1785-90.  https://doi.org/10.1038/s41591-022-01911-2  PMID: 35760080 
  13. Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608(7923):593-602.  https://doi.org/10.1038/s41586-022-04980-y  PMID: 35714668 
  14. Yamasoba D, Kosugi Y, Kimura I, Fujita S, Uriu K, Ito J, et al. Neutralisation sensitivity of SARS-CoV-2 omicron subvariants to therapeutic monoclonal antibodies. Lancet Infect Dis. 2022;22(7):942-3.  https://doi.org/10.1016/S1473-3099(22)00365-6  PMID: 35690075 
  15. Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, et al. , Indian SARS-CoV-2 Genomics Consortium (INSACOG), Genotype to Phenotype Japan (G2P-Japan) Consortium, CITIID-NIHR BioResource COVID-19 Collaboration. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599(7883):114-9.  https://doi.org/10.1038/s41586-021-03944-y  PMID: 34488225 
  16. European Centre for Disease Prevention and Control (ECDC). European Respiratory Virus Surveillance Summary (ERVISS). Stockholm: ECDC. [Accessed: 10 Mar 2025]. Available from: https://erviss.org/
  17. European Centre for Disease Prevention and Control (ECDC) and World Health Organization Regional Office for Europe (WHO/Europe). Technical guidance for antigenic SARS-CoV-2 monitoring. Stockholm: ECDC and Copenhagen: WHO/Europe; Jun 2022 Available from: https://www.ecdc.europa.eu/sites/default/files/documents/Antigenic-SARS-CoV-2-monitoring-Joint-ECDC-WHO-report-June-2022.pdf
  18. Perera RAPM, Ko R, Tsang OTY, Hui DSC, Kwan MYM, Brackman CJ, et al. Evaluation of a SARS-CoV-2 surrogate virus neutralization test for detection of antibody in human, canine, cat, and hamster sera. J Clin Microbiol. 2021;59(2):e02504-20.  https://doi.org/10.1128/JCM.02504-20  PMID: 33139421 
  19. Bewley KR, Coombes NS, Gagnon L, McInroy L, Baker N, Shaik I, et al. Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nat Protoc. 2021;16(6):3114-40.  https://doi.org/10.1038/s41596-021-00536-y  PMID: 33893470 
  20. Perera RA, Mok CK, Tsang OT, Lv H, Ko RL, Wu NC, et al. Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Euro Surveill. 2020;25(16):2000421.  https://doi.org/10.2807/1560-7917.ES.2020.25.16.2000421  PMID: 32347204 
  21. Tzou PL, Tao K, Pond SLK, Shafer RW. Coronavirus Resistance Database (CoV-RDB): SARS-CoV-2 susceptibility to monoclonal antibodies, convalescent plasma, and plasma from vaccinated persons. PLoS One. 2022;17(3):e0261045.  https://doi.org/10.1371/journal.pone.0261045  PMID: 35263335 
  22. Wright DW, Harvey WT, Hughes J, Cox M, Peacock TP, Colquhoun R, et al. Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer. Virus Evol. 2022;8(1):veac023.  https://doi.org/10.1093/ve/veac023  PMID: 35502202 
  23. European Medicines Agency (EMA). Annex I - Summary of product characteristics, Regkirona. Amsterdam: EMA; 12 Nov 2021. Available from: https://www.ema.europa.eu/en/documents/product-information/regkirona-epar-product-information_en.pdf
  24. European Medicines Agency (EMA). Annex I - Summary of product characteristics, Evusheld. Amsterdam: EMA; 2024. Available from: https://www.ema.europa.eu/en/documents/product-information/evusheld-epar-product-information_en.pdf
  25. Food and Drug Administration (FDA). Fact sheet for healthcare providers: emergency use authorization (EUA) of Regen-CoV® (casirivimab and imdevimab). Silver Spring: FDA; 2021. Revoked: 13 Dec 2024. Available from: https://www.fda.gov/media/145611/download
  26. Food and Drug Administration (FDA). Fact sheet for healthcare providers: emergency use authorization for PaxlovidTM. Silver Spring: FDA; Nov 2024. Available from: https://www.fda.gov/media/155050/download
  27. European Centre for Disease Prevention and Control (ECDC). SARS-CoV-2 variant mutations conferring reduced susceptibility to antiviral drugs and monoclonal antibodies: a non-systematic literature review for surveillance purposes. Stockholm: ECDC; Jul 2023. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/SARS-CoV-2_variant_mutations_conferring_reduced_susceptibility_to_antiviral_drugs_and_monoclonal_antibodies.pdf
  28. Cathcart AL, Havenar-Daughton C, Lempp FA, Ma D, Schmid MA, Agostini ML, et al. The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. bioRxiv. 2022:2021.03.09.434607. Preprint. https://www.biorxiv.org/content/biorxiv/early/2022/04/01/2021.03.09.434607.full.pdf
  29. Hu Y, Lewandowski EM, Tan H, Zhang X, Morgan RT, Zhang X, et al. Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. ACS Cent Sci. 2023;9(8):1658-69.  https://doi.org/10.1021/acscentsci.3c00538  PMID: 37637734 
  30. Clayton J, de Oliveira VM, Ibrahim MF, Sun X, Mahinthichaichan P, Shen M, et al. Integrative approach to dissect the drug resistance mechanism of the H172Y mutation of SARS-CoV-2 main protease. J Chem Inf Model. 2023;63(11):3521-33.  https://doi.org/10.1021/acs.jcim.3c00344  PMID: 37199464 
  31. Moghadasi SA, Biswas RG, Harki DA, Harris RS. Rapid resistance profiling of SARS-CoV-2 protease inhibitors. NPJ Antimicrob Resist. 2023;1(1):9.  https://doi.org/10.1038/s44259-023-00009-0  PMID: 39843958 
  32. Tchesnokov EP, Gordon CJ, Woolner E, Kocinkova D, Perry JK, Feng JY, et al. Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action. J Biol Chem. 2020;295(47):16156-65.  https://doi.org/10.1074/jbc.AC120.015720  PMID: 32967965 
  33. Takashita E, Kinoshita N, Yamayoshi S, Sakai-Tagawa Y, Fujisaki S, Ito M, et al. Efficacy of antibodies and antiviral drugs against Covid-19 Omicron variant. N Engl J Med. 2022;386(10):995-8.  https://doi.org/10.1056/NEJMc2119407  PMID: 35081300 
  34. Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A, Kimura I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603(7902):706-14.  https://doi.org/10.1038/s41586-022-04474-x  PMID: 35104837 
  35. Fenwick C, Turelli P, Ni D, Perez L, Lau K, Lana E, et al. SARS-CoV-2 Omicron potently neutralized by a novel antibody with unique spike binding properties. bioRxiv. 2022:2022.03.18.484873. Preprint. https://www.biorxiv.org/content/10.1101/2022.03.18.484873v1
  36. Herman GA, O’Brien MP, Forleo-Neto E, Sarkar N, Isa F, Hou P, et al. , COVID-19 Phase 3 Prevention Trial Team. Efficacy and safety of a single dose of casirivimab and imdevimab for the prevention of COVID-19 over an 8-month period: a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2022;22(10):1444-54.  https://doi.org/10.1016/S1473-3099(22)00416-9  PMID: 35803290 
  37. VanBlargan LA, Errico JM, Halfmann PJ, Zost SJ, Crowe JE Jr, Purcell LA, et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med. 2022;28(3):490-5.  https://doi.org/10.1038/s41591-021-01678-y  PMID: 35046573 
  38. Lee S, Lee SO, Lee JE, Kim K-H, Lee SH, Hwang S, et al. Regdanvimab in patients with mild-to-moderate SARS-CoV-2 infection: A propensity score-matched retrospective cohort study. Int Immunopharmacol. 2022;106:108570.  https://doi.org/10.1016/j.intimp.2022.108570  PMID: 35168079 
  39. Takashita E, Yamayoshi S, Simon V, van Bakel H, Sordillo EM, Pekosz A, et al. Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N Engl J Med. 2022;387(5):468-70.  https://doi.org/10.1056/NEJMc2207519  PMID: 35857646 
  40. Driouich JS, Bernadin O, Touret F, de Lamballerie X, Nougairède A. Activity of Sotrovimab against BQ.1.1 and XBB.1 Omicron sublineages in a hamster model. Antiviral Res. 2023;215:105638.  https://doi.org/10.1016/j.antiviral.2023.105638  PMID: 37207822 
  41. Case JB, Mackin S, Errico JM, Chong Z, Madden EA, Whitener B, et al. Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nat Commun. 2022;13(1):3824.  https://doi.org/10.1038/s41467-022-31615-7  PMID: 35780162 
  42. Martin-Blondel G, Marcelin A-G, Soulié C, Kaisaridi S, Lusivika-Nzinga C, Dorival C, et al. Sotrovimab to prevent severe COVID-19 in high-risk patients infected with Omicron BA.2. J Infect. 2022;85(4):e104-8.  https://doi.org/10.1016/j.jinf.2022.06.033  PMID: 35803386 
  43. Cheng MM, Reyes C, Satram S, Birch H, Gibbons DC, Drysdale M, et al. Real-world effectiveness of sotrovimab for the early treatment of COVID-19 during SARS-CoV-2 Delta and Omicron waves in the USA. Infect Dis Ther. 2023;12(2):607-21.  https://doi.org/10.1007/s40121-022-00755-0  PMID: 36629998 
  44. Uriu K, Ito J, Kosugi Y, Tanaka YL, Mugita Y, Guo Z, et al. Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. Lancet Infect Dis. 2023;23(11):e460-1.  https://doi.org/10.1016/S1473-3099(23)00575-3  PMID: 37734391 
  45. Sheward DJ, Yang Y, Westerberg M, Öling S, Muschiol S, Sato K, et al. Sensitivity of the SARS-CoV-2 BA.2.86 variant to prevailing neutralising antibody responses. Lancet Infect Dis. 2023;23(11):e462-3.  https://doi.org/10.1016/S1473-3099(23)00588-1  PMID: 37776877 
  46. Yang S, Yu Y, Jian F, Song W, Yisimayi A, Chen X, et al. Antigenicity and infectivity characterisation of SARS-CoV-2 BA.2.86. Lancet Infect Dis. 2023;23(11):e457-9.  https://doi.org/10.1016/S1473-3099(23)00573-X  PMID: 37738994 
  47. Huang Y, Borisov O, Kee JJ, Carpp LN, Wrin T, Cai S, et al. Calibration of two validated SARS-CoV-2 pseudovirus neutralization assays for COVID-19 vaccine evaluation. Sci Rep. 2021;11(1):23921.  https://doi.org/10.1038/s41598-021-03154-6  PMID: 34907214 
  48. Sholukh AM, Fiore-Gartland A, Ford ES, Miner MD, Hou YJ, Tse LV, et al. Evaluation of cell-based and surrogate SARS-CoV-2 neutralization assays. J Clin Microbiol. 2021;59(10):e0052721.  https://doi.org/10.1128/JCM.00527-21  PMID: 34288726 
  49. Kristiansen PA, Page M, Bernasconi V, Mattiuzzo G, Dull P, Makar K, et al. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet. 2021;397(10282):1347-8.  https://doi.org/10.1016/S0140-6736(21)00527-4  PMID: 33770519 
/content/10.2807/1560-7917.ES.2025.30.10.2400252
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error