1887
Research Open Access
Like 0

Abstract

Background

Evolution of SARS-CoV-2 is continuous.

Aim

Between 01/2020 and 02/2022, we studied SARS-CoV-2 variant epidemiology, evolution and association with COVID-19 severity.

Methods

In nasopharyngeal swabs of COVID-19 patients (n = 1,762) from France, Italy, Spain, and the Netherlands, SARS-CoV-2 was investigated by reverse transcription-quantitative PCR and whole-genome sequencing, and the virus variant/lineage (NextStrain/Pangolin) was determined. Patients’ demographic and clinical details were recorded. Associations between mild/moderate or severe COVID-19 and SARS-CoV-2 variants and patient characteristics were assessed by logistic regression. Rates and genomic locations of mutations, as well as quasi-species distribution (≥ 2 heterogeneous positions, ≥ 50× coverage) were estimated based on 1,332 high-quality sequences.

Results

Overall, 11 SARS-CoV-2 clades infected 1,762 study patients of median age 59 years (interquartile range (IQR): 45–73), with 52.5% (n = 925) being male. In total, 101 non-synonymous substitutions/insertions correlated with disease prognosis (severe, n = 27; mild-to-moderate, n = 74). Several hotspots (mutation rates ≥ 85%) occurred in Alpha, Delta, and Omicron variants of concern (VOCs) but none in pre-Alpha strains. Four hotspots were retained across all study variants, including spike:D614G. Average number of mutations per open-reading-frame (ORF) increased in the spike gene (average < 5 per genome in January 2020 to > 15 in 2022), but remained stable in ORF1ab, membrane, and nucleocapsid genes. Quasi-species were most prevalent in 20A/EU2 (48.9%), 20E/EU1 (48.6%), 20A (38.8%), and 21K/Omicron (36.1%) infections. Immunocompromised status and age (≥ 60 years), while associated with severe COVID-19 or death irrespective of variant (odds ratio (OR): 1.60–2.25; p ≤ 0.014), did not affect quasi-species’ prevalence (p > 0.05).

Conclusion

Specific mutations correlate with COVID-19 severity. Quasi-species potentially shaping VOCs’ emergence are relevant to consider.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.10.2400038
2025-03-13
2025-03-17
/content/10.2807/1560-7917.ES.2025.30.10.2400038
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/10/eurosurv-30-10-4.html?itemId=/content/10.2807/1560-7917.ES.2025.30.10.2400038&mimeType=html&fmt=ahah

References

  1. Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P, Baele G. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 2020;6(2):veaa061.  https://doi.org/10.1093/ve/veaa061  PMID: 33235813 
  2. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. , COVID-19 Genomics UK (COG-UK) Consortium. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409-24.  https://doi.org/10.1038/s41579-021-00573-0  PMID: 34075212 
  3. Ai J, Wang X, He X, Zhao X, Zhang Y, Jiang Y, et al. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host Microbe. 2022;30(8):1077-1083.e4.  https://doi.org/10.1016/j.chom.2022.05.001  PMID: 35594867 
  4. Huang M, Wu L, Zheng A, Xie Y, He Q, Rong X, et al. Atlas of currently available human neutralizing antibodies against SARS-CoV-2 and escape by Omicron sub-variants BA.1/BA.1.1/BA.2/BA.3. Immunity. 2022;55(8):1501-1514.e3.  https://doi.org/10.1016/j.immuni.2022.06.005  PMID: 35777362 
  5. Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe. 2021;29(3):477-488.e4.  https://doi.org/10.1016/j.chom.2021.01.014  PMID: 33535027 
  6. Ong SWX, Chiew CJ, Ang LW, Mak TM, Cui L, Toh MPHS, et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin Infect Dis. 2022;75(1):e1128-36.  https://doi.org/10.1093/cid/ciab721  PMID: 34423834 
  7. Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 2021;372(579):n579.  https://doi.org/10.1136/bmj.n579  PMID: 33687922 
  8. Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH, et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021;593(7858):270-4.  https://doi.org/10.1038/s41586-021-03426-1  PMID: 33723411 
  9. Campbell F, Archer B, Laurenson-Schafer H, Jinnai Y, Konings F, Batra N, et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill. 2021;26(24):2100509.  https://doi.org/10.2807/1560-7917.ES.2021.26.24.2100509  PMID: 34142653 
  10. Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol. 2023;21(6):361-79.  https://doi.org/10.1038/s41579-023-00878-2  PMID: 37020110 
  11. Kislaya I, Rodrigues EF, Borges V, Gomes JP, Sousa C, Almeida JP, et al. , PT-COVID-19 Group. Comparative Effectiveness of Coronavirus Vaccine in Preventing Breakthrough Infections among Vaccinated Persons Infected with Delta and Alpha Variants. Emerg Infect Dis. 2022;28(2):331-7.  https://doi.org/10.3201/eid2802.211789  PMID: 34876242 
  12. Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S, et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis. 2022;22(1):35-42.  https://doi.org/10.1016/S1473-3099(21)00475-8  PMID: 34461056 
  13. Bouzid D, Visseaux B, Kassasseya C, Daoud A, Fémy F, Hermand C, et al. , IMProving Emergency Care (IMPEC) FHU Collaborators Group. Comparison of Patients Infected With Delta Versus Omicron COVID-19 Variants Presenting to Paris Emergency Departments: A Retrospective Cohort Study. Ann Intern Med. 2022;175(6):831-7.  https://doi.org/10.7326/M22-0308  PMID: 35286147 
  14. Nyberg T, Bager P, Svalgaard IB, Bejko D, Bundle N, Evans J, et al. A standardised protocol for relative SARS-CoV-2 variant severity assessment, applied to Omicron BA.1 and Delta in six European countries, October 2021 to February 2022. Euro Surveill. 2023;28(36):2300048.  https://doi.org/10.2807/1560-7917.ES.2023.28.36.2300048  PMID: 37676146 
  15. Guigon A, Faure E, Lemaire C, Chopin MC, Tinez C, Assaf A, et al. Emergence of Q493R mutation in SARS-CoV-2 spike protein during bamlanivimab/etesevimab treatment and resistance to viral clearance. J Infect. 2022;84(2):248-88.  https://doi.org/10.1016/j.jinf.2021.08.033  PMID: 34437928 
  16. Jensen B, Luebke N, Feldt T, Keitel V, Brandenburger T, Kindgen-Milles D, et al. Emergence of the E484K mutation in SARS-COV-2-infected immunocompromised patients treated with bamlanivimab in Germany. Lancet Reg Health Eur. 2021;8:100164.  https://doi.org/10.1016/j.lanepe.2021.100164  PMID: 34278371 
  17. Gupta A, Konnova A, Smet M, Berkell M, Savoldi A, Morra M, et al. , mAb ORCHESTRA working group. Host immunological responses facilitate development of SARS-CoV-2 mutations in patients receiving monoclonal antibody treatments. J Clin Invest. 2023;133(6):e166032.  https://doi.org/10.1172/JCI166032  PMID: 36727404 
  18. Sanderson T, Hisner R, Donovan-Banfield I, Hartman H, Løchen A, Peacock TP, et al. A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature. 2023;623(7987):594-600.  https://doi.org/10.1038/s41586-023-06649-6 
  19. Simons LM, Ozer EA, Gambut S, Dean TJ, Zhang L, Bhimalli P, et al. De novo emergence of SARS-CoV-2 spike mutations in immunosuppressed patients. Transpl Infect Dis. 2022;24(6):e13914.  https://doi.org/10.1111/tid.13914  PMID: 35899968 
  20. Lee JS, Yun KW, Jeong H, Kim B, Kim MJ, Park JH, et al. SARS-CoV-2 shedding dynamics and transmission in immunosuppressed patients. Virulence. 2022;13(1):1242-51.  https://doi.org/10.1080/21505594.2022.2101198  PMID: 35891618 
  21. Harari S, Tahor M, Rutsinsky N, Meijer S, Miller D, Henig O, et al. Drivers of adaptive evolution during chronic SARS-CoV-2 infections. Nat Med. 2022;28(7):1501-8.  https://doi.org/10.1038/s41591-022-01882-4  PMID: 35725921 
  22. Patone M, Thomas K, Hatch R, Tan PS, Coupland C, Liao W, et al. Mortality and critical care unit admission associated with the SARS-CoV-2 lineage B.1.1.7 in England: an observational cohort study. Lancet Infect Dis. 2021;21(11):1518-28.  https://doi.org/10.1016/S1473-3099(21)00318-2  PMID: 34171232 
  23. Lin L, Liu Y, Tang X, He D. The Disease Severity and Clinical Outcomes of the SARS-CoV-2 Variants of Concern. Front Public Health. 2021;9:775224.  https://doi.org/10.3389/fpubh.2021.775224  PMID: 34917580 
  24. Majumdar P, Niyogi S. ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection. Epidemiol Infect. 2020;148:e262.  https://doi.org/10.1017/S0950268820002599  PMID: 33100263 
  25. Young BE, Fong SW, Chan YH, Mak TM, Ang LW, Anderson DE, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet. 2020;396(10251):603-11.  https://doi.org/10.1016/S0140-6736(20)31757-8  PMID: 32822564 
  26. Nagy Á, Pongor S, Győrffy B. Different mutations in SARS-CoV-2 associate with severe and mild outcome. Int J Antimicrob Agents. 2021;57(2):106272.  https://doi.org/10.1016/j.ijantimicag.2020.106272  PMID: 33347989 
  27. Marshall JC, Murthy S, Diaz J, Adhikari NK, Angus DC, Arabi YM, et al. , WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis. 2020;20(8):e192-7.  https://doi.org/10.1016/S1473-3099(20)30483-7  PMID: 32539990 
  28. Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, et al. The coding capacity of SARS-CoV-2. Nature. 2021;589(7840):125-30.  https://doi.org/10.1038/s41586-020-2739-1  PMID: 32906143 
  29. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094-100.  https://doi.org/10.1093/bioinformatics/bty191  PMID: 29750242 
  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. , 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9.  https://doi.org/10.1093/bioinformatics/btp352  PMID: 19505943 
  31. de Sena Brandine G, Smith AD. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000 Res. 2019;8:1874.  https://doi.org/10.12688/f1000research.21142.1  PMID: 33552473 
  32. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9.  https://doi.org/10.1038/nmeth.1923  PMID: 22388286 
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-77.  https://doi.org/10.1089/cmb.2012.0021  PMID: 22506599 
  34. Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, et al. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 2022;23(1):258.  https://doi.org/10.1186/s13059-022-02823-7  PMID: 36522651 
  35. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.  https://doi.org/10.1371/journal.pone.0112963  PMID: 25409509 
  36. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607-18.  https://doi.org/10.1093/nar/29.12.2607  PMID: 11410670 
  37. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59-60.  https://doi.org/10.1038/nmeth.3176  PMID: 25402007 
  38. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-80.  https://doi.org/10.1093/molbev/mst010  PMID: 23329690 
  39. Gangavarapu K, Latif AA, Mullen JL, Alkuzweny M, Hufbauer E, Tsueng G, et al. , GISAID Core and Curation Team. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat Methods. 2023;20(4):512-22.  https://doi.org/10.1038/s41592-023-01769-3  PMID: 36823332 
  40. Tsueng G, Mullen JL, Alkuzweny M, Cano M, Rush B, Haag E, et al. Outbreak.info Research Library: a standardized, searchable platform to discover and explore COVID-19 resources. Nat Methods. 2023;20(4):536-40.  https://doi.org/10.1038/s41592-023-01770-w  PMID: 36823331 
  41. Zhou HY, Cheng YX, Xu L, Li JY, Tao CY, Ji CY, et al. Genomic evidence for divergent co-infections of co-circulating SARS-CoV-2 lineages. Comput Struct Biotechnol J. 2022;20:4015-24.  https://doi.org/10.1016/j.csbj.2022.07.042  PMID: 35915661 
  42. Tavares RCA, Mahadeshwar G, Wan H, Huston NC, Pyle AM. The global and local distribution of RNA structure throughout the SARS-CoV-2 genome. J Virol. 2021;95(5):e02190-20.  https://doi.org/10.1128/JVI.02190-20  PMID: 33268519 
  43. Team RCR. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.
  44. Hodcroft EB, Zuber M, Nadeau S, Vaughan TG, Crawford KHD, Althaus CL, et al. , SeqCOVID-SPAIN consortium. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature. 2021;595(7869):707-12.  https://doi.org/10.1038/s41586-021-03677-y  PMID: 34098568 
  45. Menni C, Valdes AM, Polidori L, Antonelli M, Penamakuri S, Nogal A, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet. 2022;399(10335):1618-24.  https://doi.org/10.1016/S0140-6736(22)00327-0  PMID: 35397851 
  46. Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162-77.  https://doi.org/10.1038/s41579-022-00841-7  PMID: 36653446 
  47. Nyberg T, Ferguson NM, Nash SG, Webster HH, Flaxman S, Andrews N, et al. , COVID-19 Genomics UK (COG-UK) consortium. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet. 2022;399(10332):1303-12.  https://doi.org/10.1016/S0140-6736(22)00462-7  PMID: 35305296 
  48. Bolze A, Luo S, White S, Cirulli ET, Wyman D, Dei Rossi A, et al. SARS-CoV-2 variant Delta rapidly displaced variant Alpha in the United States and led to higher viral loads. Cell Rep Med. 2022;3(3):100564.  https://doi.org/10.1016/j.xcrm.2022.100564  PMID: 35474739 
  49. Mastrorosa I, Cozzi-Lepri A, Colavita F, Lalle E, Mazzotta V, Cimaglia C, et al. SARS-CoV-2 nasopharyngeal viral load in individuals infected with BA.2, compared to Alpha, Gamma, Delta and BA.1 variants: A single-center comparative analysis. J Clin Virol. 2022;157:105299.  https://doi.org/10.1016/j.jcv.2022.105299  PMID: 36183546 
  50. Dimcheff DE, Blair CN, Zhu Y, Chappell JD, Gaglani M, McNeal T, et al. , Investigating Respiratory Viruses in the Acutely Ill (IVY) Network. Total and subgenomic RNA viral load in patients infected with SARS-CoV-2 Alpha, Delta, and Omicron variants. J Infect Dis. 2023;228(3):235-44.  https://doi.org/10.1093/infdis/jiad061  PMID: 36883903 
  51. Jary A, Marot S, Faycal A, Leon S, Sayon S, Zafilaza K, et al. Spike Gene Evolution and Immune Escape Mutations in Patients with Mild or Moderate Forms of COVID-19 and Treated with Monoclonal Antibodies Therapies. Viruses. 2022;14(2):226.  https://doi.org/10.3390/v14020226  PMID: 35215820 
  52. Scherer EM, Babiker A, Adelman MW, Allman B, Key A, Kleinhenz JM, et al. SARS-CoV-2 Evolution and Immune Escape in Immunocompromised Patients. N Engl J Med. 2022;386(25):2436-8.  https://doi.org/10.1056/NEJMc2202861  PMID: 35675197 
  53. Zhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, et al. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nat Commun. 2022;13(1):4958.  https://doi.org/10.1038/s41467-022-32665-7  PMID: 36002453 
  54. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-9.  https://doi.org/10.1038/s41401-020-0485-4  PMID: 32747721 
  55. Shah A, Rehmat S, Aslam I, Suleman M, Batool F, Aziz A, et al. Comparative mutational analysis of SARS-CoV-2 isolates from Pakistan and structural-functional implications using computational modelling and simulation approaches. Comput Biol Med. 2022;141:105170.  https://doi.org/10.1016/j.compbiomed.2021.105170  PMID: 34968862 
  56. Kumar R, Srivastava Y, Muthuramalingam P, Singh SK, Verma G, Tiwari S, et al. Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Meta-Analysis. Viruses. 2023;15(4):856.  https://doi.org/10.3390/v15040856  PMID: 37112836 
  57. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. , Sheffield COVID-19 Genomics Group. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4):812-827.e19.  https://doi.org/10.1016/j.cell.2020.06.043  PMID: 32697968 
  58. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell. 2020;183(3):739-751.e8.  https://doi.org/10.1016/j.cell.2020.09.032  PMID: 32991842 
  59. Qin B, Li Z, Tang K, Wang T, Xie Y, Aumonier S, et al. Identification of the SARS-unique domain of SARS-CoV-2 as an antiviral target. Nat Commun. 2023;14(1):3999.  https://doi.org/10.1038/s41467-023-39709-6  PMID: 37414753 
  60. Zhang J, Ejikemeuwa A, Gerzanich V, Nasr M, Tang Q, Simard JM, et al. Understanding the Role of SARS-CoV-2 ORF3a in Viral Pathogenesis and COVID-19. Front Microbiol. 2022;13:854567.  https://doi.org/10.3389/fmicb.2022.854567 
  61. Owusu D, Pomeroy MA, Lewis NM, Wadhwa A, Yousaf AR, Whitaker B, et al. , Household Transmission Study Team. Persistent SARS-CoV-2 RNA Shedding Without Evidence of Infectiousness: A Cohort Study of Individuals With COVID-19. J Infect Dis. 2021;224(8):1362-71.  https://doi.org/10.1093/infdis/jiab107  PMID: 33649773 
  62. Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol Cell. 2021;81(3):584-598.e5.  https://doi.org/10.1016/j.molcel.2020.12.041  PMID: 33444546 
  63. Cao C, Cai Z, Xiao X, Rao J, Chen J, Hu N, et al. The architecture of the SARS-CoV-2 RNA genome inside virion. Nat Commun. 2021;12(1):3917.  https://doi.org/10.1038/s41467-021-22785-x  PMID: 34168138 
/content/10.2807/1560-7917.ES.2025.30.10.2400038
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error