-
Quasi-species prevalence and clinical impact of evolving SARS-CoV-2 lineages in European COVID-19 cohorts, January 2020 to February 2022
-
Matilda Berkell1,2,*
, Anna Górska3,* , Mathias Smet1,2,* , Delphine Bachelet4,5,* , Elisa Gentilotti3,** , Mariana Guedes3,** , Anna Maria Franco-Yusti4,6,** , Fulvia Mazzaferri3 , Erley Lizarazo Forero7 , Veerle Matheeussen1 , Benoit Visseaux6 , Zaira R. Palacios-Baena8,9 , Natascia Caroccia10,11 , Aline-Marie Florence4,5 , Charlotte Charpentier4,6 , Coretta van Leer7 , Maddalena Giannella10,11 , Alex W. Friedrich7 , Jesús Rodríguez-Baño8,9 , Jade Ghosn4,12 , ORCHESTRA working group13 , Samir Kumar-Singh1,2 , Cedric Laouénan4,5 , Evelina Tacconelli3,*** , Surbhi Malhotra-Kumar1,***
-
View Affiliations Hide AffiliationsAffiliations: 1 Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium 2 Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium 3 Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy 4 Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France 5 AP-HP Nord, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, Paris, France 6 Service de Virologie, AP-HP, Hôpital Bichat–Claude Bernard, Paris, France 7 University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands 8 Infectious Diseases and Microbiology Unit, University Hospital Virgen Macarena, Department of Medicine, University of Seville, Biomedicine Institute of Seville/CSIC, Seville, Spain 9 CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain 10 Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy 11 Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy 12 AP-HP Nord, Hôpital Bichat, Department of Infectious and Tropical Diseases, Paris, France 13 The members of the ORCHESTRA working group are listed under Collaborators * Shared first author ** Shared second author *** Shared senior authorSurbhi Malhotra-Kumarsurbhi.malhotra uantwerpen.be
-
View Collaborators
Members of the ORCHESTRA working group: Elda Righi, Alessia Savoldi, Nadhem Lafhej, Basil Britto Xavier, Christine Lammens, Davide Gibellini, Michela Conti, Carmine Cutone, Filippo Cioli Puviani, Monica Compri, Romain Coppée, Reyene Menidjel, Maria Giulia Caponcello, Paula Olivare Navarro, Patricia Pérez-Palacios, Maria Immaculada López-HernándezView Citation Hide Citation
Citation style for this article: Berkell Matilda, Górska Anna, Smet Mathias, Bachelet Delphine, Gentilotti Elisa, Guedes Mariana, Franco-Yusti Anna Maria, Mazzaferri Fulvia, Forero Erley Lizarazo, Matheeussen Veerle, Visseaux Benoit, Palacios-Baena Zaira R., Caroccia Natascia, Florence Aline-Marie, Charpentier Charlotte, van Leer Coretta, Giannella Maddalena, Friedrich Alex W., Rodríguez-Baño Jesús, Ghosn Jade, ORCHESTRA working group, Kumar-Singh Samir, Laouénan Cedric, Tacconelli Evelina, Malhotra-Kumar Surbhi. Quasi-species prevalence and clinical impact of evolving SARS-CoV-2 lineages in European COVID-19 cohorts, January 2020 to February 2022. Euro Surveill. 2025;30(10):pii=2400038. https://doi.org/10.2807/1560-7917.ES.2025.30.10.2400038 Received: 16 Jan 2024; Accepted: 05 Sept 2024
Abstract
Evolution of SARS-CoV-2 is continuous.
Between 01/2020 and 02/2022, we studied SARS-CoV-2 variant epidemiology, evolution and association with COVID-19 severity.
In nasopharyngeal swabs of COVID-19 patients (n = 1,762) from France, Italy, Spain, and the Netherlands, SARS-CoV-2 was investigated by reverse transcription-quantitative PCR and whole-genome sequencing, and the virus variant/lineage (NextStrain/Pangolin) was determined. Patients’ demographic and clinical details were recorded. Associations between mild/moderate or severe COVID-19 and SARS-CoV-2 variants and patient characteristics were assessed by logistic regression. Rates and genomic locations of mutations, as well as quasi-species distribution (≥ 2 heterogeneous positions, ≥ 50× coverage) were estimated based on 1,332 high-quality sequences.
Overall, 11 SARS-CoV-2 clades infected 1,762 study patients of median age 59 years (interquartile range (IQR): 45–73), with 52.5% (n = 925) being male. In total, 101 non-synonymous substitutions/insertions correlated with disease prognosis (severe, n = 27; mild-to-moderate, n = 74). Several hotspots (mutation rates ≥ 85%) occurred in Alpha, Delta, and Omicron variants of concern (VOCs) but none in pre-Alpha strains. Four hotspots were retained across all study variants, including spike:D614G. Average number of mutations per open-reading-frame (ORF) increased in the spike gene (average < 5 per genome in January 2020 to > 15 in 2022), but remained stable in ORF1ab, membrane, and nucleocapsid genes. Quasi-species were most prevalent in 20A/EU2 (48.9%), 20E/EU1 (48.6%), 20A (38.8%), and 21K/Omicron (36.1%) infections. Immunocompromised status and age (≥ 60 years), while associated with severe COVID-19 or death irrespective of variant (odds ratio (OR): 1.60–2.25; p ≤ 0.014), did not affect quasi-species’ prevalence (p > 0.05).
Specific mutations correlate with COVID-19 severity. Quasi-species potentially shaping VOCs’ emergence are relevant to consider.

Article metrics loading...


Full text loading...
References
-
Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P, Baele G. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 2020;6(2):veaa061. https://doi.org/10.1093/ve/veaa061 PMID: 33235813
-
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. , COVID-19 Genomics UK (COG-UK) Consortium. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409-24. https://doi.org/10.1038/s41579-021-00573-0 PMID: 34075212
-
Ai J, Wang X, He X, Zhao X, Zhang Y, Jiang Y, et al. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host Microbe. 2022;30(8):1077-1083.e4. https://doi.org/10.1016/j.chom.2022.05.001 PMID: 35594867
-
Huang M, Wu L, Zheng A, Xie Y, He Q, Rong X, et al. Atlas of currently available human neutralizing antibodies against SARS-CoV-2 and escape by Omicron sub-variants BA.1/BA.1.1/BA.2/BA.3. Immunity. 2022;55(8):1501-1514.e3. https://doi.org/10.1016/j.immuni.2022.06.005 PMID: 35777362
-
Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe. 2021;29(3):477-488.e4. https://doi.org/10.1016/j.chom.2021.01.014 PMID: 33535027
-
Ong SWX, Chiew CJ, Ang LW, Mak TM, Cui L, Toh MPHS, et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin Infect Dis. 2022;75(1):e1128-36. https://doi.org/10.1093/cid/ciab721 PMID: 34423834
-
Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 2021;372(579):n579. https://doi.org/10.1136/bmj.n579 PMID: 33687922
-
Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH, et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021;593(7858):270-4. https://doi.org/10.1038/s41586-021-03426-1 PMID: 33723411
-
Campbell F, Archer B, Laurenson-Schafer H, Jinnai Y, Konings F, Batra N, et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill. 2021;26(24):2100509. https://doi.org/10.2807/1560-7917.ES.2021.26.24.2100509 PMID: 34142653
-
Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol. 2023;21(6):361-79. https://doi.org/10.1038/s41579-023-00878-2 PMID: 37020110
-
Kislaya I, Rodrigues EF, Borges V, Gomes JP, Sousa C, Almeida JP, et al. , PT-COVID-19 Group. Comparative Effectiveness of Coronavirus Vaccine in Preventing Breakthrough Infections among Vaccinated Persons Infected with Delta and Alpha Variants. Emerg Infect Dis. 2022;28(2):331-7. https://doi.org/10.3201/eid2802.211789 PMID: 34876242
-
Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S, et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis. 2022;22(1):35-42. https://doi.org/10.1016/S1473-3099(21)00475-8 PMID: 34461056
-
Bouzid D, Visseaux B, Kassasseya C, Daoud A, Fémy F, Hermand C, et al. , IMProving Emergency Care (IMPEC) FHU Collaborators Group. Comparison of Patients Infected With Delta Versus Omicron COVID-19 Variants Presenting to Paris Emergency Departments: A Retrospective Cohort Study. Ann Intern Med. 2022;175(6):831-7. https://doi.org/10.7326/M22-0308 PMID: 35286147
-
Nyberg T, Bager P, Svalgaard IB, Bejko D, Bundle N, Evans J, et al. A standardised protocol for relative SARS-CoV-2 variant severity assessment, applied to Omicron BA.1 and Delta in six European countries, October 2021 to February 2022. Euro Surveill. 2023;28(36):2300048. https://doi.org/10.2807/1560-7917.ES.2023.28.36.2300048 PMID: 37676146
-
Guigon A, Faure E, Lemaire C, Chopin MC, Tinez C, Assaf A, et al. Emergence of Q493R mutation in SARS-CoV-2 spike protein during bamlanivimab/etesevimab treatment and resistance to viral clearance. J Infect. 2022;84(2):248-88. https://doi.org/10.1016/j.jinf.2021.08.033 PMID: 34437928
-
Jensen B, Luebke N, Feldt T, Keitel V, Brandenburger T, Kindgen-Milles D, et al. Emergence of the E484K mutation in SARS-COV-2-infected immunocompromised patients treated with bamlanivimab in Germany. Lancet Reg Health Eur. 2021;8:100164. https://doi.org/10.1016/j.lanepe.2021.100164 PMID: 34278371
-
Gupta A, Konnova A, Smet M, Berkell M, Savoldi A, Morra M, et al. , mAb ORCHESTRA working group. Host immunological responses facilitate development of SARS-CoV-2 mutations in patients receiving monoclonal antibody treatments. J Clin Invest. 2023;133(6):e166032. https://doi.org/10.1172/JCI166032 PMID: 36727404
-
Sanderson T, Hisner R, Donovan-Banfield I, Hartman H, Løchen A, Peacock TP, et al. A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature. 2023;623(7987):594-600. https://doi.org/10.1038/s41586-023-06649-6
-
Simons LM, Ozer EA, Gambut S, Dean TJ, Zhang L, Bhimalli P, et al. De novo emergence of SARS-CoV-2 spike mutations in immunosuppressed patients. Transpl Infect Dis. 2022;24(6):e13914. https://doi.org/10.1111/tid.13914 PMID: 35899968
-
Lee JS, Yun KW, Jeong H, Kim B, Kim MJ, Park JH, et al. SARS-CoV-2 shedding dynamics and transmission in immunosuppressed patients. Virulence. 2022;13(1):1242-51. https://doi.org/10.1080/21505594.2022.2101198 PMID: 35891618
-
Harari S, Tahor M, Rutsinsky N, Meijer S, Miller D, Henig O, et al. Drivers of adaptive evolution during chronic SARS-CoV-2 infections. Nat Med. 2022;28(7):1501-8. https://doi.org/10.1038/s41591-022-01882-4 PMID: 35725921
-
Patone M, Thomas K, Hatch R, Tan PS, Coupland C, Liao W, et al. Mortality and critical care unit admission associated with the SARS-CoV-2 lineage B.1.1.7 in England: an observational cohort study. Lancet Infect Dis. 2021;21(11):1518-28. https://doi.org/10.1016/S1473-3099(21)00318-2 PMID: 34171232
-
Lin L, Liu Y, Tang X, He D. The Disease Severity and Clinical Outcomes of the SARS-CoV-2 Variants of Concern. Front Public Health. 2021;9:775224. https://doi.org/10.3389/fpubh.2021.775224 PMID: 34917580
-
Majumdar P, Niyogi S. ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection. Epidemiol Infect. 2020;148:e262. https://doi.org/10.1017/S0950268820002599 PMID: 33100263
-
Young BE, Fong SW, Chan YH, Mak TM, Ang LW, Anderson DE, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet. 2020;396(10251):603-11. https://doi.org/10.1016/S0140-6736(20)31757-8 PMID: 32822564
-
Nagy Á, Pongor S, Győrffy B. Different mutations in SARS-CoV-2 associate with severe and mild outcome. Int J Antimicrob Agents. 2021;57(2):106272. https://doi.org/10.1016/j.ijantimicag.2020.106272 PMID: 33347989
-
Marshall JC, Murthy S, Diaz J, Adhikari NK, Angus DC, Arabi YM, et al. , WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis. 2020;20(8):e192-7. https://doi.org/10.1016/S1473-3099(20)30483-7 PMID: 32539990
-
Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, et al. The coding capacity of SARS-CoV-2. Nature. 2021;589(7840):125-30. https://doi.org/10.1038/s41586-020-2739-1 PMID: 32906143
-
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094-100. https://doi.org/10.1093/bioinformatics/bty191 PMID: 29750242
-
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. , 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9. https://doi.org/10.1093/bioinformatics/btp352 PMID: 19505943
-
de Sena Brandine G, Smith AD. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000 Res. 2019;8:1874. https://doi.org/10.12688/f1000research.21142.1 PMID: 33552473
-
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9. https://doi.org/10.1038/nmeth.1923 PMID: 22388286
-
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-77. https://doi.org/10.1089/cmb.2012.0021 PMID: 22506599
-
Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, et al. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 2022;23(1):258. https://doi.org/10.1186/s13059-022-02823-7 PMID: 36522651
-
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. https://doi.org/10.1371/journal.pone.0112963 PMID: 25409509
-
Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607-18. https://doi.org/10.1093/nar/29.12.2607 PMID: 11410670
-
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59-60. https://doi.org/10.1038/nmeth.3176 PMID: 25402007
-
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-80. https://doi.org/10.1093/molbev/mst010 PMID: 23329690
-
Gangavarapu K, Latif AA, Mullen JL, Alkuzweny M, Hufbauer E, Tsueng G, et al. , GISAID Core and Curation Team. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat Methods. 2023;20(4):512-22. https://doi.org/10.1038/s41592-023-01769-3 PMID: 36823332
-
Tsueng G, Mullen JL, Alkuzweny M, Cano M, Rush B, Haag E, et al. Outbreak.info Research Library: a standardized, searchable platform to discover and explore COVID-19 resources. Nat Methods. 2023;20(4):536-40. https://doi.org/10.1038/s41592-023-01770-w PMID: 36823331
-
Zhou HY, Cheng YX, Xu L, Li JY, Tao CY, Ji CY, et al. Genomic evidence for divergent co-infections of co-circulating SARS-CoV-2 lineages. Comput Struct Biotechnol J. 2022;20:4015-24. https://doi.org/10.1016/j.csbj.2022.07.042 PMID: 35915661
-
Tavares RCA, Mahadeshwar G, Wan H, Huston NC, Pyle AM. The global and local distribution of RNA structure throughout the SARS-CoV-2 genome. J Virol. 2021;95(5):e02190-20. https://doi.org/10.1128/JVI.02190-20 PMID: 33268519
-
Team RCR. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.
-
Hodcroft EB, Zuber M, Nadeau S, Vaughan TG, Crawford KHD, Althaus CL, et al. , SeqCOVID-SPAIN consortium. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature. 2021;595(7869):707-12. https://doi.org/10.1038/s41586-021-03677-y PMID: 34098568
-
Menni C, Valdes AM, Polidori L, Antonelli M, Penamakuri S, Nogal A, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet. 2022;399(10335):1618-24. https://doi.org/10.1016/S0140-6736(22)00327-0 PMID: 35397851
-
Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162-77. https://doi.org/10.1038/s41579-022-00841-7 PMID: 36653446
-
Nyberg T, Ferguson NM, Nash SG, Webster HH, Flaxman S, Andrews N, et al. , COVID-19 Genomics UK (COG-UK) consortium. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet. 2022;399(10332):1303-12. https://doi.org/10.1016/S0140-6736(22)00462-7 PMID: 35305296
-
Bolze A, Luo S, White S, Cirulli ET, Wyman D, Dei Rossi A, et al. SARS-CoV-2 variant Delta rapidly displaced variant Alpha in the United States and led to higher viral loads. Cell Rep Med. 2022;3(3):100564. https://doi.org/10.1016/j.xcrm.2022.100564 PMID: 35474739
-
Mastrorosa I, Cozzi-Lepri A, Colavita F, Lalle E, Mazzotta V, Cimaglia C, et al. SARS-CoV-2 nasopharyngeal viral load in individuals infected with BA.2, compared to Alpha, Gamma, Delta and BA.1 variants: A single-center comparative analysis. J Clin Virol. 2022;157:105299. https://doi.org/10.1016/j.jcv.2022.105299 PMID: 36183546
-
Dimcheff DE, Blair CN, Zhu Y, Chappell JD, Gaglani M, McNeal T, et al. , Investigating Respiratory Viruses in the Acutely Ill (IVY) Network. Total and subgenomic RNA viral load in patients infected with SARS-CoV-2 Alpha, Delta, and Omicron variants. J Infect Dis. 2023;228(3):235-44. https://doi.org/10.1093/infdis/jiad061 PMID: 36883903
-
Jary A, Marot S, Faycal A, Leon S, Sayon S, Zafilaza K, et al. Spike Gene Evolution and Immune Escape Mutations in Patients with Mild or Moderate Forms of COVID-19 and Treated with Monoclonal Antibodies Therapies. Viruses. 2022;14(2):226. https://doi.org/10.3390/v14020226 PMID: 35215820
-
Scherer EM, Babiker A, Adelman MW, Allman B, Key A, Kleinhenz JM, et al. SARS-CoV-2 Evolution and Immune Escape in Immunocompromised Patients. N Engl J Med. 2022;386(25):2436-8. https://doi.org/10.1056/NEJMc2202861 PMID: 35675197
-
Zhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, et al. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nat Commun. 2022;13(1):4958. https://doi.org/10.1038/s41467-022-32665-7 PMID: 36002453
-
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-9. https://doi.org/10.1038/s41401-020-0485-4 PMID: 32747721
-
Shah A, Rehmat S, Aslam I, Suleman M, Batool F, Aziz A, et al. Comparative mutational analysis of SARS-CoV-2 isolates from Pakistan and structural-functional implications using computational modelling and simulation approaches. Comput Biol Med. 2022;141:105170. https://doi.org/10.1016/j.compbiomed.2021.105170 PMID: 34968862
-
Kumar R, Srivastava Y, Muthuramalingam P, Singh SK, Verma G, Tiwari S, et al. Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Meta-Analysis. Viruses. 2023;15(4):856. https://doi.org/10.3390/v15040856 PMID: 37112836
-
Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. , Sheffield COVID-19 Genomics Group. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4):812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043 PMID: 32697968
-
Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell. 2020;183(3):739-751.e8. https://doi.org/10.1016/j.cell.2020.09.032 PMID: 32991842
-
Qin B, Li Z, Tang K, Wang T, Xie Y, Aumonier S, et al. Identification of the SARS-unique domain of SARS-CoV-2 as an antiviral target. Nat Commun. 2023;14(1):3999. https://doi.org/10.1038/s41467-023-39709-6 PMID: 37414753
-
Zhang J, Ejikemeuwa A, Gerzanich V, Nasr M, Tang Q, Simard JM, et al. Understanding the Role of SARS-CoV-2 ORF3a in Viral Pathogenesis and COVID-19. Front Microbiol. 2022;13:854567. https://doi.org/10.3389/fmicb.2022.854567
-
Owusu D, Pomeroy MA, Lewis NM, Wadhwa A, Yousaf AR, Whitaker B, et al. , Household Transmission Study Team. Persistent SARS-CoV-2 RNA Shedding Without Evidence of Infectiousness: A Cohort Study of Individuals With COVID-19. J Infect Dis. 2021;224(8):1362-71. https://doi.org/10.1093/infdis/jiab107 PMID: 33649773
-
Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol Cell. 2021;81(3):584-598.e5. https://doi.org/10.1016/j.molcel.2020.12.041 PMID: 33444546
-
Cao C, Cai Z, Xiao X, Rao J, Chen J, Hu N, et al. The architecture of the SARS-CoV-2 RNA genome inside virion. Nat Commun. 2021;12(1):3917. https://doi.org/10.1038/s41467-021-22785-x PMID: 34168138

Data & Media loading...
