1887
Rapid communication Open Access
Like 0

Abstract

We isolated three genotypes of highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b from wild birds infected with H5N1 (n = 12) and H5N8 (n = 1) in Hong Kong SAR 2021–2024. Viruses from two spoonbills from late 2022 were genetically related to a virus from a human in China. Four tested viruses exhibited variable virulence in mice but were susceptible to approved antivirals. No neutralising antibody was detected in 63 age-stratified human sera, suggesting potential risk should the virus adapt to humans.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.1.2400839
2025-01-09
2025-01-15
/content/10.2807/1560-7917.ES.2025.30.1.2400839
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/1/eurosurv-30-1-4.html?itemId=/content/10.2807/1560-7917.ES.2025.30.1.2400839&mimeType=html&fmt=ahah

References

  1. Shi W, Gao GF. Emerging H5N8 avian influenza viruses. Science. 2021;372(6544):784-6.  https://doi.org/10.1126/science.abg6302  PMID: 34016764 
  2. Sturm-Ramirez KM, Ellis T, Bousfield B, Bissett L, Dyrting K, Rehg JE, et al. Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J Virol. 2004;78(9):4892-901.  https://doi.org/10.1128/JVI.78.9.4892-4901.2004  PMID: 15078970 
  3. Cui P, Shi J, Wang C, Zhang Y, Xing X, Kong H, et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg Microbes Infect. 2022;11(1):1693-704.  https://doi.org/10.1080/22221751.2022.2088407  PMID: 35699072 
  4. Hew LY, Isoda N, Takaya F, Ogasawara K, Kobayashi D, Huynh LT, et al. Continuous introduction of H5 high pathogenicity avian influenza viruses in Hokkaido, Japan: characterization of viruses isolated in winter 2022–2023 and early winter 2023–2024. Transbound Emerg Dis. 2024;2024(1):1199876.  https://doi.org/10.1155/2024/1199876 
  5. Xiong J, Zhou H, Fan L, Zhu G, Li Y, Chen G, et al. Emerging highly pathogenic avian influenza (H5N8) virus in migratory birds in Central China, 2020. Emerg Microbes Infect. 2021;10(1):1503-6.  https://doi.org/10.1080/22221751.2021.1956372  PMID: 34260340 
  6. Choi WS, Baek YH, Kwon JJ, Jeong JH, Park SJ, Kim YI, et al. Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse. Sci Rep. 2017;7(1):40667.  https://doi.org/10.1038/srep40667  PMID: 28094780 
  7. Gao R, Gu M, Liu K, Li Q, Li J, Shi L, et al. T160A mutation-induced deglycosylation at site 158 in hemagglutinin is a critical determinant of the dual receptor binding properties of clade 2.3.4.4 H5NX subtype avian influenza viruses. Vet Microbiol. 2018;217:158-66.  https://doi.org/10.1016/j.vetmic.2018.03.018  PMID: 29615249 
  8. Cui Y, Li Y, Li M, Zhao L, Wang D, Tian J, et al. Evolution and extensive reassortment of H5 influenza viruses isolated from wild birds in China over the past decade. Emerg Microbes Infect. 2020;9(1):1793-803.  https://doi.org/10.1080/22221751.2020.1797542  PMID: 32686602 
  9. Zhang Y, Cui P, Shi J, Zeng X, Jiang Y, Chen Y, et al. A broad-spectrum vaccine candidate against H5 viruses bearing different sub-clade 2.3.4.4 HA genes. NPJ Vaccines. 2024;9(1):152.  https://doi.org/10.1038/s41541-024-00947-4  PMID: 39160189 
  10. Tada T, Suzuki K, Sakurai Y, Kubo M, Okada H, Itoh T, et al. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens. J Virol. 2011;85(4):1834-46.  https://doi.org/10.1128/JVI.01648-10  PMID: 21123376 
  11. Gao W, Zu Z, Liu J, Song J, Wang X, Wang C, et al. Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells. J Gen Virol. 2019;100(9):1273-81.  https://doi.org/10.1099/jgv.0.001294  PMID: 31305236 
  12. Hu M, Yuan S, Ye ZW, Singh K, Li C, Shuai H, et al. PAN substitutions A37S, A37S/I61T and A37S/V63I attenuate the replication of H7N7 influenza A virus by impairing the polymerase and endonuclease activities. J Gen Virol. 2017;98(3):364-73.  https://doi.org/10.1099/jgv.0.000717  PMID: 28113045 
  13. DesRochers BL, Chen RE, Gounder AP, Pinto AK, Bricker T, Linton CN, et al. Residues in the PB2 and PA genes contribute to the pathogenicity of avian H7N3 influenza A virus in DBA/2 mice. Virology. 2016;494:89-99.  https://doi.org/10.1016/j.virol.2016.04.013  PMID: 27105450 
  14. Gamarra-Toledo V, Plaza PI, Gutiérrez R, Inga-Diaz G, Saravia-Guevara P, Pereyra-Meza O, et al. Mass mortality of sea lions caused by highly pathogenic avian influenza A(H5N1) virus. Emerg Infect Dis. 2023;29(12):2553-6.  https://doi.org/10.3201/eid2912.230192  PMID: 37916983 
  15. Caserta LC, Frye EA, Butt SL, Laverack M, Nooruzzaman M, Covaleda LM, et al. Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle. Nature. 2024;634(8034):669-76.  https://doi.org/10.1038/s41586-024-07849-4  PMID: 39053575 
  16. Tian J, Bai X, Li M, Zeng X, Xu J, Li P, et al. Highly pathogenic avian influenza virus (H5N1) clade 2.3.4.4b introduced by wild birds, China, 2021. Emerg Infect Dis. 2023;29(7):1367-75.  https://doi.org/10.3201/eid2907.221149  PMID: 37347504 
/content/10.2807/1560-7917.ES.2025.30.1.2400839
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error