1887
Outbreaks Open Access
Like 0

Abstract

is an opportunistic pathogen with a propensity to cause nosocomial outbreaks, particularly in neonatal intensive care units (NICUs). We present a sustained outbreak spanning over 18 months (1 January 2022–29 August 2023) in a NICU in Antwerp, Belgium, affecting 61 neonates, identified through samples taken for diagnostic purposes and by rectal screening. Ten neonates were infected: five with lower respiratory tract infection, four with conjunctivitis and one fatal case with sepsis. In a logistic regression analysis, nursing in an incubator was significantly associated with acquisition of (odds ratio (OR): 2.99; 95% confidence interval (CI): 1.14–8.25; p < 0.05). Whole genome sequencing-based multilocus sequence typing (wgMLST) and core genome single nucleotide polymorphism (cgSNP) analysis of isolates from clinical (n = 4), screening (n = 52) and environmental samples (n = 8), identified eight clusters and five singletons not associated with the clusters. Although outbreak measures were successful in containing further spread within the ward during sudden surges when > 4 cases per week were identified (peak events), several peaks with different clonal clusters occurred. The emergence of similar outbreaks in Belgian hospitals underscores the need of continuous surveillance and NICU-specific infection prevention and control (IPC) measures.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.48.2400144
2024-11-28
2025-01-06
/content/10.2807/1560-7917.ES.2024.29.48.2400144
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/48/eurosurv-29-48-6.html?itemId=/content/10.2807/1560-7917.ES.2024.29.48.2400144&mimeType=html&fmt=ahah

References

  1. Williams DJ, Grimont PAD, Cazares A, Grimont F, Ageron E, Pettigrew KA, et al. The genus Serratia revisited by genomics. Nat Commun. 2022;13(1):5195.  https://doi.org/10.1038/s41467-022-32929-2  PMID: 36057639 
  2. Raymond J, Aujard Y. Nosocomial infections in pediatric patients: a European, multicenter prospective study. Infect Control Hosp Epidemiol. 2000;21(4):260-3.  https://doi.org/10.1086/501755  PMID: 10782588 
  3. Gastmeier P, Loui A, Stamm-Balderjahn S, Hansen S, Zuschneid I, Sohr D, et al. Outbreaks in neonatal intensive care units - they are not like others. Am J Infect Control. 2007;35(3):172-6.  https://doi.org/10.1016/j.ajic.2006.07.007  PMID: 17433940 
  4. Coggins SA, Edwards EM, Flannery DD, Gerber JS, Horbar JD, Puopolo KM. Serratia infection epidemiology among very preterm infants in the neonatal intensive care unit. Pediatr Infect Dis J. 2023;42(2):152-8.  https://doi.org/10.1097/INF.0000000000003736  PMID: 36638403 
  5. David MD, Weller TMA, Lambert P, Fraise AP. An outbreak of Serratia marcescens on the neonatal unit: a tale of two clones. J Hosp Infect. 2006;63(1):27-33.  https://doi.org/10.1016/j.jhin.2005.11.006  PMID: 16516339 
  6. Johnson A, Watson D, Dreyfus J, Heaton P, Lampland A, Spaulding AB. Epidemiology of Serratia bloodstream infections among hospitalized children in the United States, 2009-2016. Pediatr Infect Dis J. 2020;39(6):e71-3.  https://doi.org/10.1097/INF.0000000000002618  PMID: 32091494 
  7. van Ogtrop ML, van Zoeren-Grobben D, Verbakel-Salomons EMA, van Boven CPA. Serratia marcescens infections in neonatal departments: description of an outbreak and review of the literature. J Hosp Infect. 1997;36(2):95-103.  https://doi.org/10.1016/S0195-6701(97)90115-8  PMID: 9211156 
  8. Cristina ML, Sartini M, Spagnolo AM. Serratia marcescens infections in neonatal intensive care units (NICUs). Int J Environ Res Public Health. 2019;16(4):610.  https://doi.org/10.3390/ijerph16040610  PMID: 30791509 
  9. Smith PJ, Brookfield DSK, Shaw DA, Gray J. An outbreak of Serratia marcescens infections in a neonatal unit. Lancet. 1984;1(8369):151-3.  https://doi.org/10.1016/S0140-6736(84)90074-6  PMID: 6140453 
  10. European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of healthcare- associated infections and antimicrobial use in European acute care hospitals –2022-2023. Stockholm: ECDC; 6 May 2024. Available from: https://www.ecdc.europa.eu/en/publications-data/PPS-HAI-AMR-acute-care-europe-2022-2023
  11. Baselski VS, Weissfeld A. Introduction. In: Leber AL (editor). Clinical Microbiology Procedures Handbook. Washington DC: American Society for Microbiology; 2016. p. 1.1.–1.1.7. Available from: http://doi.wiley.com/10.1128/9781555818814
  12. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 13.1, 29 Jun 2023. Available from: https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents>
  13. Krueger F, James F, Ewels P, Afyounian E, Schuster-Boeckler B. Trim Galore. 2 Feb 2023. Available from: https://github.com/FelixKrueger/TrimGalore>
  14. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-77.  https://doi.org/10.1089/cmb.2012.0021  PMID: 22506599 
  15. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9.  https://doi.org/10.1093/bioinformatics/btu153  PMID: 24642063 
  16. Xavier BB, Mysara M, Bolzan M, Ribeiro-Gonçalves B, Alako BTF, Harrison P, et al. BacPipe: a rapid, user-friendly whole-genome sequencing pipeline for clinical diagnostic bacteriology. iScience. 2020;23(1):100769.  https://doi.org/10.1016/j.isci.2019.100769  PMID: 31887656 
  17. Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J, Santos S, et al. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb Genom. 2018;4(3):e000166.  https://doi.org/10.1099/mgen.0.000166  PMID: 29543149 
  18. Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018;28(9):1395-404.  https://doi.org/10.1101/gr.232397.117  PMID: 30049790 
  19. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15(11):524.  https://doi.org/10.1186/s13059-014-0524-x  PMID: 25410596 
  20. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268-74.  https://doi.org/10.1093/molbev/msu300  PMID: 25371430 
  21. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. GGTREE: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8(1):28-36.  https://doi.org/10.1111/2041-210X.12628 
  22. Christensen GD, Korones SB, Reed L, Bulley R, McLaughlin B, Bisno AL. Epidemic Serratia marcescens in a neonatal intensive care unit: importance of the gastrointestinal tract as a reservoir. Infect Control. 1982;3(2):127-33.  https://doi.org/10.1017/S0195941700055909  PMID: 7042624 
  23. Giles M, Harwood HM, Gosling DA, Hennessy D, Pearce CT, Daley AJ. What is the best screening method to detect Serratia marcescens colonization during an outbreak in a neonatal intensive care nursery? J Hosp Infect. 2006;62(3):349-52.  https://doi.org/10.1016/j.jhin.2005.09.015  PMID: 16337029 
  24. Hopman J, Tostmann A, Wertheim H, Bos M, Kolwijck E, Akkermans R, et al. Reduced rate of intensive care unit acquired gram-negative bacilli after removal of sinks and introduction of ‘water-free’ patient care. Antimicrob Resist Infect Control. 2017;6(1):59.  https://doi.org/10.1186/s13756-017-0213-0  PMID: 28616203 
  25. Bourdin T, Benoit , Prévost M, Charron D, Quach C, Déziel E, et al. Disinfection of sink drains to reduce a source of three opportunistic pathogens, during Serratia marcescens clusters in a neonatal intensive care unit. PLoS One. 2024;19(6):e0304378.  https://doi.org/10.1371/journal.pone.0304378  PMID: 38865328 
  26. Smolders D, Hendriks B, Rogiers P, Mul M, Gordts B. Acetic acid as a decontamination method for ICU sink drains colonized by carbapenemase-producing Enterobacteriaceae and its effect on CPE infections. J Hosp Infect. 2019;102(1):82-8.  https://doi.org/10.1016/j.jhin.2018.12.009  PMID: 30579969 
  27. Hernandez-Alonso E, Bourgeois-Nicolaos N, Lepainteur M, Derouin V, Barreault S, Waalkes A, et al. Contaminated incubators: source of a multispecies Enterobacter outbreak of neonatal sepsis. Microbiol Spectr. 2022;10(4):e0096422.  https://doi.org/10.1128/spectrum.00964-22  PMID: 35703554 
  28. Muyldermans A, Crombé F, Bosmans P, Cools F, Piérard D, Wybo I. Serratia marcescens outbreak in a neonatal intensive care unit and the potential of whole-genome sequencing. J Hosp Infect. 2021;111:148-54.  https://doi.org/10.1016/j.jhin.2021.02.006  PMID: 33581246 
  29. Yeo KT, Octavia S, Lim K, Lin C, Lin R, Thoon KC, et al. Serratia marcescens in the neonatal intensive care unit: A cluster investigation using molecular methods. J Infect Public Health. 2020;13(7):1006-11.  https://doi.org/10.1016/j.jiph.2019.12.003  PMID: 31883745 
  30. Rossen JWA, Dombrecht J, Vanfleteren D, De Bruyne K, van Belkum A, Rosema S, et al. Epidemiological typing of Serratia marcescens isolates by whole-genome multilocus sequence typing. J Clin Microbiol. 2019;57(4):e01652-18.  https://doi.org/10.1128/JCM.01652-18  PMID: 30728192 
/content/10.2807/1560-7917.ES.2024.29.48.2400144
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error