1887
Surveillance Open Access
Like 0

Abstract

Background

West Nile virus (WNV) has an enzootic cycle between birds and mosquitoes, humans being incidental dead-end hosts. Circulation of WNV is an increasing public health threat in Europe. While detection of WNV is notifiable in humans and animals in the European Union, surveillance based on human case numbers presents some limitations, including reporting delays.

Aim

We aimed to perform risk mapping of WNV circulation leading to human infections in Europe by integrating two types of surveillance systems: indicator-based and event-based surveillance.

Methods

For indicator-based surveillance, we used data on human case numbers reported to the European Centre for Disease Prevention and Control (ECDC), and for event-based data, we retrieved information from news articles collected through an automated biosurveillance platform. In addition to these data sources, we also used environmental data to train ecological niche models to map the risk of local WNV circulation leading to human infections.

Results

The ecological niche models based on both types of surveillance data highlighted new areas potentially at risk of WNV infection in humans, particularly in Spain, Italy, France and Greece.

Conclusion

Although event-based surveillance data do not constitute confirmed occurrence records, integrating both indicator-based and event-based surveillance data proved useful. These results underscore the potential for a more proactive and comprehensive strategy in managing the threat of WNV in Europe by combining indicator- and event-based and environmental data for effective surveillance and public health response.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.44.2400084
2024-10-31
2024-12-22
/content/10.2807/1560-7917.ES.2024.29.44.2400084
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/44/eurosurv-29-44-3.html?itemId=/content/10.2807/1560-7917.ES.2024.29.44.2400084&mimeType=html&fmt=ahah

References

  1. Semenza JC, Zeller H. Integrated surveillance for prevention and control of emerging vector-borne diseases in Europe. Euro Surveill. 2014;19(13):20757.  https://doi.org/10.2807/1560-7917.ES2014.19.13.20757  PMID: 24721535 
  2. European Centre for Disease Prevention and Control (ECDC). West Nile virus infection - Annual Epidemiological Report for 2019. Stockholm: ECDC; 19 Mar 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-infection-annual-epidemiological-report-2019
  3. European Centre for Disease Prevention and Control (ECDC). Autochthonous transmission of chikungunya virus in mainland EU/EEA, 2007–present. Stockholm: ECDC; 13 Aug 2024. Available from: https://www.ecdc.europa.eu/en/infectious-disease-topics/z-disease-list/chikungunya-virus-disease/surveillance-threats-and
  4. European Centre for Disease Prevention and Control (ECDC). Local transmission of dengue virus in mainland EU/EEA, 2010-present. Stockholm: ECDC; 18 Oct 2024. Available from: https://www.ecdc.europa.eu/en/all-topics-z/dengue/surveillance-and-disease-data/autochthonous-transmission-dengue-virus-eueea
  5. Calistri P, Giovannini A, Hubalek Z, Ionescu A, Monaco F, Savini G, et al. Epidemiology of west nile in europe and in the mediterranean basin. Open Virol J. 2010;4(1):29-37.  https://doi.org/10.2174/1874357901004010029  PMID: 20517490 
  6. Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis. 2005;11(8):1167-73.  https://doi.org/10.3201/eid1108.050289a  PMID: 16102302 
  7. Castillo-Olivares J, Wood J. West Nile virus infection of horses. Vet Res. 2004;35(4):467-83.  https://doi.org/10.1051/vetres:2004022  PMID: 15236677 
  8. Petersen LR, Brault AC, Nasci RS. West Nile virus: review of the literature. JAMA. 2013;310(3):308-15.  https://doi.org/10.1001/jama.2013.8042  PMID: 23860989 
  9. Tsai TF, Popovici F, Cernescu C, Campbell GL, Nedelcu NI. West Nile encephalitis epidemic in southeastern Romania. Lancet. 1998;352(9130):767-71.  https://doi.org/10.1016/S0140-6736(98)03538-7  PMID: 9737281 
  10. Bárdos V, Adamcová J, Dedei S, Gjini N, Rosický B, Simková A. Neutralizing antibodies against some neurotropic viruses determined in human sera in Albania. J Hyg Epidemiol Microbiol Immunol. 1959;3:277-82. PMID: 13796704 
  11. Bakonyi T, Haussig JM. West Nile virus keeps on moving up in Europe. Euro Surveill. 2020;25(46):2001938.  https://doi.org/10.2807/1560-7917.ES.2020.25.46.2001938  PMID: 33213684 
  12. D’Amore C, Grimaldi P, Ascione T, Conti V, Sellitto C, Franci G, et al. West Nile virus diffusion in temperate regions and climate change. A systematic review. Infez Med. 2023;31(1):20-30. PMID: 36908379 
  13. Rocklöv J, Dubrow R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol. 2020;21(5):479-83.  https://doi.org/10.1038/s41590-020-0648-y  PMID: 32313242 
  14. Ostfeld RS. Biodiversity loss and the ecology of infectious disease. Lancet Planet Health. 2017;1(1):e2-3.  https://doi.org/10.1016/S2542-5196(17)30010-4  PMID: 29851590 
  15. Paquet C, Coulombier D, Kaiser R, Ciotti M. Epidemic intelligence: a new framework for strengthening disease surveillance in Europe. Euro Surveill. 2006;11(12):212-4.  https://doi.org/10.2807/esm.11.12.00665-en  PMID: 17370970 
  16. Dub T, Mäkelä H, Van Kleef E, Leblond A, Mercier A, Hénaux V, et al. Epidemic intelligence activities among national public and animal health agencies: a European cross-sectional study. BMC Public Health. 2023;23(1):1488.  https://doi.org/10.1186/s12889-023-16396-y  PMID: 37542208 
  17. Jourdain F, Roiz D, de Valk H, Noël H, L’Ambert G, Franke F, et al. From importation to autochthonous transmission: Drivers of chikungunya and dengue emergence in a temperate area. PLoS Negl Trop Dis. 2020;14(5):e0008320.  https://doi.org/10.1371/journal.pntd.0008320  PMID: 32392224 
  18. Arsevska E, Valentin S, Rabatel J, de Goër de Hervé J, Falala S, Lancelot R, et al. Web monitoring of emerging animal infectious diseases integrated in the French Animal Health Epidemic Intelligence System. PLoS One. 2018;13(8):e0199960.  https://doi.org/10.1371/journal.pone.0199960  PMID: 30074992 
  19. Carrion M, Madoff LC. ProMED-mail: 22 years of digital surveillance of emerging infectious diseases. Int Health. 2017;9(3):177-83.  https://doi.org/10.1093/inthealth/ihx014  PMID: 28582558 
  20. Freifeld CC, Mandl KD, Reis BY, Brownstein JS. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J Am Med Inform Assoc. 2008;15(2):150-7.  https://doi.org/10.1197/jamia.M2544  PMID: 18096908 
  21. Valentin S, Arsevska E, Falala S, de Goër J, Lancelot R, Mercier A, et al. PADI-web: A multilingual event-based surveillance system for monitoring animal infectious diseases. Comput Electron Agric. 2020;169:105163.  https://doi.org/10.1016/j.compag.2019.105163 
  22. Salami D, Sousa CA, Martins MDRO, Capinha C. Predicting dengue importation into Europe, using machine learning and model-agnostic methods. Sci Rep. 2020;10(1):9689.  https://doi.org/10.1038/s41598-020-66650-1  PMID: 32546771 
  23. Watts MJ, Sarto I Monteys V, Mortyn PG, Kotsila P. The rise of West Nile Virus in Southern and Southeastern Europe: A spatial-temporal analysis investigating the combined effects of climate, land use and economic changes. One Health. 2021;13:100315.  https://doi.org/10.1016/j.onehlt.2021.100315  PMID: 34485672 
  24. Farooq Z, Rocklöv J, Wallin J, Abiri N, Sewe MO, Sjödin H, et al. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. Lancet Reg Health Eur. 2022;17:100370.  https://doi.org/10.1016/j.lanepe.2022.100370  PMID: 35373173 
  25. European Centre for Disease Prevention and Control (ECDC). Long-term surveillance framework 2021–2027. Stockholm: ECDC; 4 Apr 2023. Available: https://www.ecdc.europa.eu/en/publications-data/long-term-surveillance-framework-2021-2027
  26. Eurostat. NUTS- Nomenclature of Territorial Units for Statistics. Luxemburg: Eurostat; 2021. Available from: https://ec.europa.eu/eurostat
  27. European Centre for Disease Prevention and Control (ECDC). West Nile virus - human cases compared to previous seasons, 23 August 2023. Stockholm: ECDC; 25 Aug 2023. Available from: https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-human-cases-compared-previous-seasons-23-august-2023
  28. Hernangómez D. giscoR: Download Map Data from GISCO API - Eurostat. Geneve: Zenodo; 28Aug2024. Available from: https://zenodo.org/doi/10.5281/zenodo.4317946
  29. Giesen C, Herrador Z, Fernandez-Martinez B, Figuerola J, Gangoso L, Vazquez A, et al. A systematic review of environmental factors related to WNV circulation in European and Mediterranean countries. One Health. 2023;16:100478.  https://doi.org/10.1016/j.onehlt.2022.100478  PMID: 37363246 
  30. Wint GRW, Balenghien T, Berriatua E, Braks M, Marsboom C, Medlock J, et al. VectorNet: collaborative mapping of arthropod disease vectors in Europe and surrounding areas since 2010. Euro Surveill. 2023;28(26):2200666.  https://doi.org/10.2807/1560-7917.ES.2023.28.26.2200666  PMID: 37382886 
  31. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77(4):802-13.  https://doi.org/10.1111/j.1365-2656.2008.01390.x  PMID: 18397250 
  32. Colin B, Clifford S, Wu P, Rathmanner S, Mengersen K. Using boosted regression trees and remotely sensed data to drive decision-making. Open J Stat. 2017;7(5):859-75.  https://doi.org/10.4236/ojs.2017.75061 
  33. Erazo D, Grant L, Ghisbain G, Marini G, Colón-González FJ, Wint W, et al. Contribution of climate change to the spatial expansion of West Nile virus in Europe. Nat Commun. 2024;15(1):1196.  https://doi.org/10.1038/s41467-024-45290-3  PMID: 38331945 
  34. Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A. Are niche-based species distribution models transferable in space? J Biogeogr. 2006;33(10):1689-703.  https://doi.org/10.1111/j.1365-2699.2006.01466.x 
  35. Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol Evol. 2019;10(2):225-32.  https://doi.org/10.1111/2041-210X.13107 
  36. Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr. 2008;17(2):145-51.  https://doi.org/10.1111/j.1466-8238.2007.00358.x 
  37. Jiménez-Valverde A. Threshold-dependence as a desirable attribute for discrimination assessment: implications for the evaluation of species distribution models. Biodivers Conserv. 2014;23(2):369-85.  https://doi.org/10.1007/s10531-013-0606-1 
  38. Jiménez-Valverde A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob Ecol Biogeogr. 2012;21(4):498-507.  https://doi.org/10.1111/j.1466-8238.2011.00683.x 
  39. Ghisbain G, Thiery W, Massonnet F, Erazo D, Rasmont P, Michez D, et al. Projected decline in European bumblebee populations in the twenty-first century. Nature. 2024;628(8007):337-41.  https://doi.org/10.1038/s41586-023-06471-0  PMID: 37704726 
  40. Leroy B, Delsol R, Hugueny B, Meynard CN, Barhoumi C, Barbet-Massin M, et al. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr. 2018;45(9):1994-2002.  https://doi.org/10.1111/jbi.13402 
  41. Sørensen T. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. Munksgaard in Komm.; 1948. Available from: https://books.google.be/books?id=rpS8GAAACAAJ
  42. Li W, Guo Q. How to assess the prediction accuracy of species presence–absence models without absence data? Ecography. 2013;36(7):788-99.  https://doi.org/10.1111/j.1600-0587.2013.07585.x 
  43. European Centre for Disease Prevention and Control (ECDC). Epidemiological update: West Nile virus transmission season in Europe, 2021. Stockholm: ECDC; 24 Mar 2022. Available from: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2021
  44. Farooq Z, Sjödin H, Semenza JC, Tozan Y, Sewe MO, Wallin J, et al. European projections of West Nile virus transmission under climate change scenarios. One Health. 2023;16:100509.  https://doi.org/10.1016/j.onehlt.2023.100509  PMID: 37363233 
  45. García-Carrasco J-M, Muñoz A-R, Olivero J, Segura M, Real R. Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS Negl Trop Dis. 2021;15(1):e0009022.  https://doi.org/10.1371/journal.pntd.0009022  PMID: 33411739 
  46. García-Carrasco JM, Muñoz AR, Real R. Anticipating the locations in Europe of high-risk areas for West Nile virus outbreaks in 2021. Zoonoses Public Health. 2021;68(8):982-6.  https://doi.org/10.1111/zph.12877  PMID: 34242480 
  47. Di Pol G, Crotta M, Taylor RA. Modelling the temperature suitability for the risk of West Nile Virus establishment in European Culex pipiens populations. Transbound Emerg Dis. 2022;69(5):e1787-99.  https://doi.org/10.1111/tbed.14513  PMID: 35304820 
  48. Moser SK, Barnard M, Frantz RM, Spencer JA, Rodarte KA, Crooker IK, et al. Scoping review of Culex mosquito life history trait heterogeneity in response to temperature. Parasit Vectors. 2023;16(1):200.  https://doi.org/10.1186/s13071-023-05792-3  PMID: 37316915 
  49. Drakou K, Nikolaou T, Vasquez M, Petric D, Michaelakis A, Kapranas A, et al. The effect of weather variables on mosquito activity: a snapshot of the main point of entry of Cyprus. Int J Environ Res Public Health. 2020;17(4):1403.  https://doi.org/10.3390/ijerph17041403  PMID: 32098137 
  50. Roiz D, Ruiz S, Soriguer R, Figuerola J. Climatic effects on mosquito abundance in Mediterranean wetlands. Parasit Vectors. 2014;7(1):333.  https://doi.org/10.1186/1756-3305-7-333  PMID: 25030527 
  51. Ruiz MO, Walker ED, Foster ES, Haramis LD, Kitron UD. Association of West Nile virus illness and urban landscapes in Chicago and Detroit. Int J Health Geogr. 2007;6(1):10.  https://doi.org/10.1186/1476-072X-6-10  PMID: 17352825 
  52. Fanelli A, Schnitzler JC, De Nardi M, Donachie A, Capua I, Lanave G, et al. Epidemic intelligence data of Crimean-Congo haemorrhagic fever, European Region, 2012 to 2022: a new opportunity for risk mapping of neglected diseases. Euro Surveill. 2023;28(16):2200542.  https://doi.org/10.2807/1560-7917.ES.2023.28.16.2200542  PMID: 37078883 
  53. Badker R, Miller K, Pardee C, Oppenheim B, Stephenson N, Ash B, et al. Challenges in reported COVID-19 data: best practices and recommendations for future epidemics. BMJ Glob Health. 2021;6(5):e005542.  https://doi.org/10.1136/bmjgh-2021-005542  PMID: 33958393 
/content/10.2807/1560-7917.ES.2024.29.44.2400084
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error