1887
Research Open Access
Like 0

Abstract

Background

Outbreaks of highly pathogenic avian influenza (HPAI) on poultry farms and in wild birds worldwide persists despite intensified control measures. It causes unprecedented mortality in bird populations and is increasingly affecting mammalian species. Better understanding of HPAI introduction pathways into farms are needed for targeted disease prevention and control. The relevance of airborne transmission has been suggested but research involving air sampling is limited and unequivocal evidence on transmission routes is lacking.

Aim

We aimed to investigate whether HPAI virus from wild birds can enter poultry houses through air inlets by characterising host materials through eukaryote DNA sequencing.

Methods

We collected particulate matter samples in and around three HPAI-affected poultry farms which were cleared and decontaminated before sampling. Indoor measurements (n = 61) were taken directly in the airflow entering through air inlets, while outdoor air samples (n = 60) were collected around the poultry house. Positive controls were obtained from a bird rehabilitation shelter. We performed metabarcoding on environmental DNA by deep sequencing 18S rRNA gene amplicons.

Results

We detected waterbird DNA in air inside all three, and outside of two, poultry farms. Sequences annotated at species level included swans and tufted ducks. Waterbird DNA was present in all indoor and outdoor air samples from the bird shelter.

Conclusion

Airborne matter derived from contaminated wild birds can potentially introduce HPAI virus to poultry houses through air inlets. The eDNA metabarcoding could assess breaches in biosecurity for HPAI virus and other pathogens potentially transmitted through air via detection of their hosts.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.40.2400350
2024-10-03
2025-01-19
/content/10.2807/1560-7917.ES.2024.29.40.2400350
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/40/eurosurv-29-40-3.html?itemId=/content/10.2807/1560-7917.ES.2024.29.40.2400350&mimeType=html&fmt=ahah

References

  1. Beerens N, Heutink R, Harders F, Roose M, Pritz-Verschuren SBE, Germeraad EA, et al. Incursion of novel highly pathogenic avian influenza A(H5N8) virus, the Netherlands, October 2020. Emerg Infect Dis. 2021;27(6):1750-3.  https://doi.org/10.3201/eid2706.204464  PMID: 34013854 
  2. Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, et al. , European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza. Avian influenza overview September - December 2022. EFSA J. 2023;21(1):e07786. PMID: 36698491 
  3. Engelsma M, Heutink R, Harders F, Germeraad EA, Beerens N. Multiple introductions of reassorted highly pathogenic avian influenza H5Nx viruses clade 2.3.4.4b causing outbreaks in wild birds and poultry in The Netherlands, 2020-2021. Microbiol Spectr. 2022;10(2):e0249921.  https://doi.org/10.1128/spectrum.02499-21  PMID: 35286149 
  4. Floyd T, Banyard AC, Lean FZX, Byrne AMP, Fullick E, Whittard E, et al. Encephalitis and death in wild mammals at a rehabilitation center after infection with highly pathogenic avian influenza A(H5N8) virus, United Kingdom. Emerg Infect Dis. 2021;27(11):2856-63.  https://doi.org/10.3201/eid2711.211225  PMID: 34670647 
  5. Velkers FC, Manders TTM, Vernooij JCM, Stahl J, Slaterus R, Stegeman JA. Association of wild bird densities around poultry farms with the risk of highly pathogenic avian influenza virus subtype H5N8 outbreaks in the Netherlands, 2016. Transbound Emerg Dis. 2021;68(1):76-87.  https://doi.org/10.1111/tbed.13595  PMID: 32419342 
  6. Schreuder J, de Knegt HJ, Velkers FC, Elbers ARW, Stahl J, Slaterus R, et al. Wild bird densities and landscape variables predict spatial patterns in HPAI outbreak risk across the Netherlands. Pathogens. 2022;11(5):549.  https://doi.org/10.3390/pathogens11050549  PMID: 35631070 
  7. James J, Warren CJ, De Silva D, Lewis T, Grace K, Reid SM, et al. The role of airborne particles in the epidemiology of clade 2.3.4.4b H5N1 High pathogenicity avian influenza virus in commercial poultry production units. Viruses. 2023;15(4):1002.  https://doi.org/10.3390/v15041002  PMID: 37112981 
  8. Verhagen JH, Fouchier RAM, Lewis N. Highly pathogenic avian influenza viruses at the wild-domestic bird interface in Europe: future directions for research and surveillance. Viruses. 2021;13(2):212.  https://doi.org/10.3390/v13020212  PMID: 33573231 
  9. Ramey AM, Reeves AB, Lagassé BJ, Patil V, Hubbard LE, Kolpin DW, et al. Evidence for interannual persistence of infectious influenza A viruses in Alaska wetlands. Sci Total Environ. 2022;803:150078.  https://doi.org/10.1016/j.scitotenv.2021.150078  PMID: 34525758 
  10. Filaire F, Lebre L, Foret-Lucas C, Vergne T, Daniel P, Lelièvre A, et al. Highly pathogenic avian influenza A(H5N8) clade 2.3.4.4b virus in dust samples from poultry farms, France, 2021. Emerg Infect Dis. 2022;28(7):1446-50.  https://doi.org/10.3201/eid2807.212247  PMID: 35642480 
  11. Zhao Y, Richardson B, Takle E, Chai L, Schmitt D, Xin H. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci Rep. 2019;9(1):11755.  https://doi.org/10.1038/s41598-019-47788-z  PMID: 31409807 
  12. Elbers ARW, Gonzales JL, Koene MGJ, Germeraad EA, Hakze-van der Honing RW, van der Most M, et al. Monitoring wind-borne particle matter entering poultry farms via the air-inlet: highly pathogenic avian influenza virus and other pathogens risk. Pathogens. 2022;11(12):1534.  https://doi.org/10.3390/pathogens11121534  PMID: 36558868 
  13. Lynggaard C, Bertelsen MF, Jensen CV, Johnson MS, Frøslev TG, Olsen MT, et al. Airborne environmental DNA for terrestrial vertebrate community monitoring. Curr Biol. 2022;32(3):701-707.e5.  https://doi.org/10.1016/j.cub.2021.12.014  PMID: 34995490 
  14. de Groot GA, Geisen S, Wubs ERJ, Meulenbroek L, Laros I, Snoek LB, et al. The aerobiome uncovered: Multi-marker metabarcoding reveals potential drivers of turn-over in the full microbial community in the air. Environ Int. 2021;154:106551.  https://doi.org/10.1016/j.envint.2021.106551  PMID: 33857708 
  15. Wolters WJ, Vernooij JCM, Spliethof TM, Wiegel J, Elbers ARW, Spierenburg MAH, et al. Comparison of the clinical manifestation of HPAI H5Nx in different poultry types in the Netherlands, 2014-2022. Pathogens. 2024;13(4):280.  https://doi.org/10.3390/pathogens13040280  PMID: 38668235 
  16. de Rooij MMT, Hoek G, Schmitt H, Janse I, Swart A, Maassen CBM, et al. Insights into livestock-related microbial concentrations in air at residential level in a livestock dense area. Environ Sci Technol. 2019;53(13):7746-58.  https://doi.org/10.1021/acs.est.8b07029  PMID: 31081619 
  17. Kwok KTT, de Rooij MMT, Messink AB, Wouters IM, Smit LAM, Cotten M, et al. Establishing farm dust as a useful viral metagenomic surveillance matrix. Sci Rep. 2022;12(1):16308.  https://doi.org/10.1038/s41598-022-20701-x  PMID: 36175536 
  18. de Rooij MMT, Hakze-Van der Honing RW, Hulst MM, Harders F, Engelsma M, van de Hoef W, et al. Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms. Occup Environ Med. 2021;78(12):893-9.  https://doi.org/10.1136/oemed-2021-107443  PMID: 34330815 
  19. Biesbroek G, Sanders EAM, Roeselers G, Wang X, Caspers MPM, Trzciński K, et al. Deep sequencing analyses of low density microbial communities: working at the boundary of accurate microbiota detection. PLoS One. 2012;7(3):e32942.  https://doi.org/10.1371/journal.pone.0032942  PMID: 22412957 
  20. Bradley IM, Pinto AJ, Guest JS. Design and evaluation of Illumina MiSeq-Compatible, 18S rRNA gene-specific primers for improved characterization of mixed phototrophic communities. Appl Environ Microbiol. 2016;82(19):5878-91.  https://doi.org/10.1128/AEM.01630-16  PMID: 27451454 
  21. Schreuder J, Velkers FC, Bouwstra RJ, Beerens N, Stegeman JA, de Boer WF, et al. An observational field study of the cloacal microbiota in adult laying hens with and without access to an outdoor range. Anim Microbiome. 2020;2(1):28.  https://doi.org/10.1186/s42523-020-00044-6  PMID: 33499947 
  22. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-3.  https://doi.org/10.1038/nmeth.3869  PMID: 27214047 
  23. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-7.  https://doi.org/10.1093/molbev/msab120  PMID: 33892491 
  24. Brown JD, Swayne DE, Cooper RJ, Burns RE, Stallknecht DE. Persistence of H5 and H7 avian influenza viruses in water. Avian Dis. 2007;51(1) Suppl;285-9.  https://doi.org/10.1637/7636-042806R.1  PMID: 17494568 
  25. Breban R, Drake JM, Stallknecht DE, Rohani P. The role of environmental transmission in recurrent avian influenza epidemics. PLOS Comput Biol. 2009;5(4):e1000346.  https://doi.org/10.1371/journal.pcbi.1000346  PMID: 19360126 
  26. Kress WJ, Erickson DL. DNA barcodes: methods and protocols. Methods Mol Biol. 2012;858:3-8.  https://doi.org/10.1007/978-1-61779-591-6_1  PMID: 22684949 
  27. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H. ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour. 2013;13(2):218-24.  https://doi.org/10.1111/1755-0998.12065  PMID: 23350562 
  28. Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47(D1):D259-64.  https://doi.org/10.1093/nar/gky1022  PMID: 30371820 
  29. Crits-Christoph A, Levy JI, Pekar JE, Goldstein SA, Singh R, Hensel Z, et al. Genetic tracing of market wildlife and viruses at the epicenter of the COVID-19 pandemic. bioRxiv 2023.09.13.557637  https://doi.org/10.1101/2023.09.13.557637 .  https://doi.org/10.1101/2023.09.13.557637 
  30. Giebner H, Langen K, Bourlat SJ, Kukowka S, Mayer C, Astrin JJ, et al. Comparing diversity levels in environmental samples: DNA sequence capture and metabarcoding approaches using 18S and COI genes. Mol Ecol Resour. 2020;20(5):1333-45.  https://doi.org/10.1111/1755-0998.13201  PMID: 32462738 
/content/10.2807/1560-7917.ES.2024.29.40.2400350
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error