1887
Research Open Access
Like 0

Abstract

Background

After most COVID-19 pandemic control measures were lifted in 2022, many infectious diseases re-emerged. An increase in invasive group A streptococcal (iGAS) infections among adults and young children was reported by several countries. Viral infections including influenza and varicella, known risk factors for iGAS infection, also increased.

Aim

To estimate the proportion of GAS skin and soft tissue infections (SSTI) and pneumonia/sepsis in children (≤ 5 years) attributable to varicella, and the proportion of GAS pneumonia/sepsis in children and adults attributable to potentially predisposing respiratory viruses influenza A and B, RSV, hMPV and SARS-CoV-2 in the Netherlands.

Methods

We performed time series regression using weekly data on respiratory viruses, varicella and non-invasive GAS infections and GAS isolates cultured from blood, lower airways, skin, pus and wounds, from January 2010 to March 2023.

Results

In 2010–19, 50% (95% CI: 36–64) of GAS SSTI in children were attributable to varicella. Between January 2022 and March 2023, 34% (95% CI: 24–43) of GAS SSTI cases were attributable to varicella. Of iGAS pneumonia/sepsis between January 2022 and March 2023, 34% (95% CI: 20–49) and 25% (95% CI: 18–32) was attributable to respiratory virus infections in children and adults, respectively, with the largest contributor (17%) being influenza A.

Conclusions

Predisposing viral infections likely contributed to, but cannot fully explain, the observed iGAS increase among children and adults in 2022–23 in the Netherlands. Public health measures to control viral infections, such as vaccination against varicella or influenza, might reduce the iGAS disease burden.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.40.2300739
2024-10-03
2024-10-07
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.40.2300739
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/40/eurosurv-29-40-4.html?itemId=/content/10.2807/1560-7917.ES.2024.29.40.2300739&mimeType=html&fmt=ahah

References

  1. de Gier B, Marchal N, de Beer-Schuurman I, Te Wierik M, Hooiveld M, de Melker HE, et al. Increase in invasive group A streptococcal (Streptococcus pyogenes) infections (iGAS) in young children in the Netherlands, 2022. Euro Surveill. 2023;28(1):2200941.  https://doi.org/10.2807/1560-7917.ES.2023.28.1.2200941  PMID: 36695447 
  2. European Centre for Disease Prevention and Control (ECDC). Increase in invasive group A streptococcal infections among children in Europe, including fatalities. Stockholm: ECDC; 2022. Available from: https://www.ecdc.europa.eu/en/news-events/increase-invasive-group-streptococcal-infections-among-children-europe-including
  3. Guy R, Henderson KL, Coelho J, Hughes H, Mason EL, Gerver SM, et al. Increase in invasive group A streptococcal infection notifications, England, 2022. Euro Surveill. 2023;28(1):2200942.  https://doi.org/10.2807/1560-7917.ES.2023.28.1.2200942  PMID: 36695450 
  4. Lassoued Y, Assad Z, Ouldali N, Caseris M, Mariani P, Birgy A, et al. Unexpected increase in invasive group A streptococcal infections in children after respiratory viruses outbreak in France: a 15-year time-series analysis. Open Forum Infect Dis. 2023;10(5):ofad188.  https://doi.org/10.1093/ofid/ofad188  PMID: 37180594 
  5. Gouveia C, Bajanca-Lavado MP, Mamede R, Araújo Carvalho A, Rodrigues F, Melo-Cristino J, et al. Sustained increase of paediatric invasive Streptococcus pyogenes infections dominated by M1UK and diverse emm12 isolates, Portugal, September 2022 to May 2023. Euro Surveill. 2023;28(36):2300427.  https://doi.org/10.2807/1560-7917.ES.2023.28.36.2300427  PMID: 37676143 
  6. Cobo-Vazquez E, Aguilera-Alonso D, Carrasco-Colom J, Calvo C, Saavedra-Lozano J, PedGAS-net Working Group. Increasing incidence and severity of invasive Group A streptococcal disease in Spanish children in 2019-2022. Lancet Reg Health Eur. 2023;27:100597.  https://doi.org/10.1016/j.lanepe.2023.100597  PMID: 36895202 
  7. Nygaard U, Hartling UB, Munkstrup C, Nielsen AB, Dungu KHS, Schmidt LS, et al. Invasive group A streptococcal infections in children and adolescents in Denmark during 2022-23 compared with 2016-17 to 2021-22: a nationwide, multicentre, population-based cohort study. Lancet Child Adolesc Health. 2024;8(2):112-21.  https://doi.org/10.1016/S2352-4642(23)00295-X  PMID: 38103567 
  8. Laupland KB, Davies HD, Low DE, Schwartz B, Green K, McGeer A, et al. Invasive group A streptococcal disease in children and association with varicella-zoster virus infection. Pediatrics. 2000;105(5):E60.  https://doi.org/10.1542/peds.105.5.e60  PMID: 10799624 
  9. Imöhl M, van der Linden M, Reinert RR, Ritter K. Invasive group A streptococcal disease and association with varicella in Germany, 1996-2009. FEMS Immunol Med Microbiol. 2011;62(1):101-9.  https://doi.org/10.1111/j.1574-695X.2011.00788.x  PMID: 21314732 
  10. Herrera AL, Huber VC, Chaussee MS. The association between invasive group A streptococcal diseases and viral respiratory tract infections. Front Microbiol. 2016;7:342.  https://doi.org/10.3389/fmicb.2016.00342  PMID: 27047460 
  11. de Gier B, Vlaminckx BJM, Woudt SHS, van Sorge NM, van Asten L. Associations between common respiratory viruses and invasive group A streptococcal infection: A time-series analysis. Influenza Other Respir Viruses. 2019;13(5):453-8.  https://doi.org/10.1111/irv.12658  PMID: 31237087 
  12. van Kempen EB, Bruijning-Verhagen PCJ, Borensztajn D, Vermont CL, Quaak MSW, Janson JA, et al. Increase in invasive group A streptococcal infections in children in the Netherlands, a survey among 7 hospitals in 2022. Pediatr Infect Dis J. 2023;42(4):e122-4.  https://doi.org/10.1097/INF.0000000000003810  PMID: 36728741 
  13. Altorf-van der Kuil W, Schoffelen AF, de Greeff SC, Thijsen SF, Alblas HJ, Notermans DW, et al. National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands. Euro Surveill. 2017;22(46):17-00062.  https://doi.org/10.2807/1560-7917.ES.2017.22.46.17-00062  PMID: 29162208 
  14. Nivel. Actuele Weekcijfers Aandoeningen- Surveillance. Utrecht: Nivel; 2023. Available from: https://www.nivel.nl/nl/zorg-en-ziekte-in-cijfers/actuele-cijfers-ziekten-per-week
  15. World Health Organization (WHO). International Classification of Primary Care, 2nd edition (ICPC-2). Geneva: WHO; 2024. Available from: https://www.who.int/standards/classifications/other-classifications/international-classification-of-primary-care
  16. De Gier B, Nijsten DRE, Duijster JW, Hahne SJM. Virological surveillance in the Netherlands- Virological weekly reports. State of Infectious Diseases in the Netherlands, 2016. RIVM Report 2017-0029/2017. Bilthoven: RIVM; 2017. Available from: https://www.rivm.nl/bibliotheek/rapporten/2017-0029.pdf
  17. van Boven M, Hetebrij WA, Swart A, Nagelkerke E, van der Beek RF, Stouten S, et al. Patterns of SARS-CoV-2 circulation revealed by a nationwide sewage surveillance programme, the Netherlands, August 2020 to February 2022. Euro Surveill. 2023;28(25):2200700.  https://doi.org/10.2807/1560-7917.ES.2023.28.25.2200700  PMID: 37347416 
  18. Eilers PHC, Marx BD. Flexible smoothing with B-splines and penalties. Stat Sci. 1996;11(2):89-121.  https://doi.org/10.1214/ss/1038425655 
  19. Scheipl F. spikeSlabGAM: bayesian variable selection, model choice and regularization for generalized additive mixed models in R. J Stat Softw. 2011;43(14):1-24.  https://doi.org/10.18637/jss.v043.i14 
  20. Gasparrini A. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. J Stat Softw. 2011;43(8):1-20.  https://doi.org/10.18637/jss.v043.i08  PMID: 22003319 
  21. R Foundation for Statistical Computing. R: A language and environment for statistical computing. Vienna: R Core Team; 2022. Available from: https://www.R-project.org
  22. Stan Development Team. RStan: the R interface to Stan. R package version 2.21.8. 2023. Available from: https://mc-stan.org
  23. Davies PJB, Russell CD, Morgan AR, Taori SK, Lindsay D, Ure R, et al. Increase of severe pulmonary infections in adults caused by M1(UK) Streptococcus pyogenes, Central Scotland, UK. Emerg Infect Dis. 2023;29(8):1638-42.  https://doi.org/10.3201/eid2908.230569  PMID: 37343545 
  24. Holdstock V, Twynam-Perkins J, Bradnock T, Dickson EM, Harvey-Wood K, Kalima P, et al. National case series of group A streptococcus pleural empyema in children: clinical and microbiological features. Lancet Infect Dis. 2023;23(2):154-6.  https://doi.org/10.1016/S1473-3099(23)00008-7  PMID: 36634683 
  25. Lynskey NN, Jauneikaite E, Li HK, Zhi X, Turner CE, Mosavie M, et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. Lancet Infect Dis. 2019;19(11):1209-18.  https://doi.org/10.1016/S1473-3099(19)30446-3  PMID: 31519541 
  26. Rümke LW, de Gier B, Vestjens SMT, van der Ende A, van Sorge NM, Vlaminckx BJM, et al. Dominance of M1UK clade among Dutch M1 Streptococcus pyogenes. Lancet Infect Dis. 2020;20(5):539-40.  https://doi.org/10.1016/S1473-3099(20)30278-4  PMID: 32359464 
  27. Rümke LW, Davies MA, Vestjens SMT, van der Putten BCL, Bril-Keijzers WCM, van Houten MA, et al. Nationwide upsurge in invasive disease in the context of longitudinal surveillance of carriage and invasive Streptococcus pyogenes 2009-2023, the Netherlands: a molecular epidemiological study. J Clin Microbiol. 2024;e0076624.; Epub ahead of print.  https://doi.org/10.1128/jcm.00766-24  PMID: 39194268 
  28. Davies MR, Keller N, Brouwer S, Jespersen MG, Cork AJ, Hayes AJ, et al. Detection of Streptococcus pyogenes M1UK in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. Nat Commun. 2023;14(1):1051.  https://doi.org/10.1038/s41467-023-36717-4  PMID: 36828918 
  29. Johannesen TB, Munkstrup C, Edslev SM, Baig S, Nielsen S, Funk T, et al. Increase in invasive group A streptococcal infections and emergence of novel, rapidly expanding sub-lineage of the virulent Streptococcus pyogenes M1 clone, Denmark, 2023. Euro Surveill. 2023;28(26):2300291.  https://doi.org/10.2807/1560-7917.ES.2023.28.26.2300291  PMID: 37382884 
  30. Heins M, Korevaar J, Knottnerus B, Hooiveld M. Vaccine Coverage Dutch National Influenza Prevention Program 2021: brief monitor. In: Nivel, editor. 2022.
  31. Frère J, Bidet P, Tapiéro B, Rallu F, Minodier P, Bonacorsi S, et al. Clinical and microbiological characteristics of invasive group A streptococcal infections before and after implementation of a universal varicella vaccine program. Clin Infect Dis. 2016;62(1):75-7.  https://doi.org/10.1093/cid/civ793  PMID: 26409062 
  32. Hasin O, Hazan G, Rokney A, Dayan R, Sagi O, Ben-Shimol S, et al. Invasive group A streptococcus infection in children in Southern Israel before and after the introduction of varicella vaccine. J Pediatric Infect Dis Soc. 2020;9(2):236-9.  https://doi.org/10.1093/jpids/piz013  PMID: 30927745 
  33. Herrera AL, Potts R, Huber VC, Chaussee MS. Influenza enhances host susceptibility to non-pulmonary invasive Streptococcus pyogenes infections. Virulence. 2023;14(1):2265063.  https://doi.org/10.1080/21505594.2023.2265063  PMID: 37772916 
/content/10.2807/1560-7917.ES.2024.29.40.2300739
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error