1887
Outbreaks Open Access
Like 0

Abstract

Carbapenem-resistant (CRAb) is an important pathogen causing serious nosocomial infections. We describe an outbreak of CRAb in an intensive care unit in the Netherlands in 2021. During an outbreak of non-resistant , while infection control measures were in place, CRAb isolates carrying highly similar and encoding plasmids were isolated from three patients over a period of several months. The chromosomal and plasmid sequences of the CRAb and non-carbapenemase-carrying isolates cultured from patient materials were analysed using hybrid assemblies of short-read and long-read sequences. The CRAb isolates revealed that the CRAb outbreak consisted of two different strains, carrying similar plasmids. The plasmids contained multiple antibiotic resistance genes including the tetracycline resistance gene , and the and carbapenemase genes. We determined minimal inhibitory concentrations (MICs) for 13 antibiotics, including the newly registered tetracycline antibiotics eravacycline and omadacycline. The CRAb isolates showed high MICs for tetracycline antibiotics including eravacycline and omadacycline, except for minocycline which had a low MIC. In this study we show the value of sequencing multidrug-resistant for outbreak tracking and guiding outbreak mitigation measures.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.28.2400019
2024-07-11
2024-07-15
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.28.2400019
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/28/eurosurv-29-28-3_TALSMA.html?itemId=/content/10.2807/1560-7917.ES.2024.29.28.2400019&mimeType=html&fmt=ahah

References

  1. Piperaki ET, Tzouvelekis LS, Miriagou V, Daikos GL. Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. Clin Microbiol Infect. 2019;25(8):951-7.  https://doi.org/10.1016/j.cmi.2019.03.014  PMID: 30914347 
  2. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27.  https://doi.org/10.1016/S1473-3099(17)30753-3  PMID: 29276051 
  3. Mohd Sazlly Lim S, Zainal Abidin A, Liew SM, Roberts JA, Sime FB. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. J Infect. 2019;79(6):593-600.  https://doi.org/10.1016/j.jinf.2019.09.012  PMID: 31580871 
  4. Ayobami O, Willrich N, Suwono B, Eckmanns T, Markwart R. The epidemiology of carbapenem-non-susceptible Acinetobacter species in Europe: analysis of EARS-Net data from 2013 to 2017. Antimicrob Resist Infect Control. 2020;9(1):89.  https://doi.org/10.1186/s13756-020-00750-5  PMID: 32560670 
  5. Isler B, Doi Y, Bonomo RA, Paterson DL. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother. 2018;63(1):e01110-18.  https://doi.org/10.1128/AAC.01110-18  PMID: 30323035 
  6. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232-60.  https://doi.org/10.1128/MMBR.65.2.232-260.2001  PMID: 11381101 
  7. Sun J, Chen C, Cui CY, Zhang Y, Liu X, Cui ZH, et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat Microbiol. 2019;4(9):1457-64.  https://doi.org/10.1038/s41564-019-0496-4  PMID: 31235960 
  8. He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol. 2019;4(9):1450-6.  https://doi.org/10.1038/s41564-019-0445-2  PMID: 31133751 
  9. He T, Li R, Wei R, Liu D, Bai L, Zhang L, et al. Characterization of Acinetobacter indicus co-harbouring tet(X3) and blaNDM-1 of dairy cow origin. J Antimicrob Chemother. 2020;75(9):2693-6.  https://doi.org/10.1093/jac/dkaa182  PMID: 32449918 
  10. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST reading guide for broth microdilution. Version 5.0. Växjö: EUCAST; 2024. Available from: https://www.eucast.org/ast_of_bacteria/mic_determination
  11. International Organization for Standardization (ISO). ISO 20776-1:2019. Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices. Part 1: broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. Geneva: ISO; 2019.Available from: https://www.iso.org/standard/70464.html
  12. Hendrickx APA, Landman F, de Haan A, Borst D, Witteveen S, van Santen-Verheuvel MG, et al. Plasmid diversity among genetically related Klebsiella pneumoniae blaKPC-2 and blaKPC-3 isolates collected in the Dutch national surveillance. Sci Rep. 2020;10(1):16778.  https://doi.org/10.1038/s41598-020-73440-2  PMID: 33033293 
  13. Loman NJ, Quinlan AR. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics. 2014;30(23):3399-401.  https://doi.org/10.1093/bioinformatics/btu555  PMID: 25143291 
  14. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13(6):e1005595.  https://doi.org/10.1371/journal.pcbi.1005595  PMID: 28594827 
  15. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9.  https://doi.org/10.1093/bioinformatics/btu153  PMID: 24642063 
  16. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45(W1):W30-5.  https://doi.org/10.1093/nar/gkx343  PMID: 28472413 
  17. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother. 2019;63(11):e00483-19.  https://doi.org/10.1128/AAC.00483-19  PMID: 31427293 
  18. Akhtar AA, Turner DP. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb Pathog. 2022;171:105734.  https://doi.org/10.1016/j.micpath.2022.105734  PMID: 36007845 
  19. Chang JC, Wilkening RV, Rahbari KM, Federle MJ. Quorum sensing regulation of a major facilitator superfamily transporter affects multiple streptococcal virulence factors. J Bacteriol. 2022;204(9):e0017622.  https://doi.org/10.1128/jb.00176-22  PMID: 35938850 
  20. Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr. 2016;4(1):10.1128/microbiolspec.VMBF-0012-2015.  https://doi.org/10.1128/microbiolspec.VMBF-0012-2015  PMID: 26999395 
  21. Kovacs-Simon A, Titball RW, Michell SL. Lipoproteins of bacterial pathogens. Infect Immun. 2011;79(2):548-61.  https://doi.org/10.1128/IAI.00682-10  PMID: 20974828 
  22. Alt-Mörbe J, Stryker JL, Fuqua C, Li PL, Farrand SK, Winans SC. The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes. J Bacteriol. 1996;178(14):4248-57.  https://doi.org/10.1128/jb.178.14.4248-4257.1996  PMID: 8763954 
  23. Christie PJ, Gomez Valero L, Buchrieser C. Biological diversity and evolution of type IV secretion systems. Curr Top Microbiol Immunol. 2017;413:1-30.  https://doi.org/10.1007/978-3-319-75241-9_1  PMID: 29536353 
  24. Maneewannakul K, Maneewannakul S, Ippen-Ihler K. Characterization of traX, the F plasmid locus required for acetylation of F-pilin subunits. J Bacteriol. 1995;177(11):2957-64.  https://doi.org/10.1128/jb.177.11.2957-2964.1995  PMID: 7768788 
  25. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34(Database issue):D32-6.  https://doi.org/10.1093/nar/gkj014  PMID: 16381877 
  26. Desmet S, Nepal S, van Dijl JM, Van Ranst M, Chlebowicz MA, Rossen JW, et al. Antibiotic resistance plasmids cointegrated into a megaplasmid harboring the blaOXA-427 carbapenemase gene. Antimicrob Agents Chemother. 2018;62(3):e01448-17.  https://doi.org/10.1128/AAC.01448-17  PMID: 29311088 
  27. Salgado-Camargo AD, Castro-Jaimes S, Gutierrez-Rios RM, Lozano LF, Altamirano-Pacheco L, Silva-Sanchez J, et al. Structure and evolution of Acinetobacter baumannii plasmids. Front Microbiol. 2020;11:1283.  https://doi.org/10.3389/fmicb.2020.01283  PMID: 32625185 
  28. Ghaly TM, Paulsen IT, Sajjad A, Tetu SG, Gillings MR. A novel family of Acinetobacter mega-plasmids are disseminating multi-drug resistance across the globe while acquiring location-specific accessory genes. Front Microbiol. 2020;11:605952.  https://doi.org/10.3389/fmicb.2020.605952  PMID: 33343549 
  29. Moore IF, Hughes DW, Wright GD. Tigecycline is modified by the flavin-dependent monooxygenase TetX. Biochemistry. 2005;44(35):11829-35.  https://doi.org/10.1021/bi0506066  PMID: 16128584 
  30. Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem. 2004;279(50):52346-52.  https://doi.org/10.1074/jbc.M409573200  PMID: 15452119 
  31. Chen C, Cui CY, Yu JJ, He Q, Wu XT, He YZ, et al. Genetic diversity and characteristics of high-level tigecycline resistance Tet(X) in Acinetobacter species. Genome Med. 2020;12(1):111.  https://doi.org/10.1186/s13073-020-00807-5  PMID: 33287863 
  32. Wang L, Liu D, Lv Y, Cui L, Li Y, Li T, et al. Novel plasmid-mediated tet(X5) gene conferring resistance to tigecycline, eravacycline, and omadacycline in a clinical Acinetobacter baumannii isolate. Antimicrob Agents Chemother. 2019;64(1):e01326-19.  https://doi.org/10.1128/AAC.01326-19  PMID: 31611352 
  33. Chandran S, Manokaran Y, Vijayakumar S, Shankar BA, Bakthavatchalam YD, Dwarakanathan HT, et al. Enhanced bacterial killing with a combination of sulbactam/minocycline against dual carbapenemase-producing Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. 2023;42(5):645-51.  https://doi.org/10.1007/s10096-023-04583-z  PMID: 36905566 
  34. Dimitriadis P, Protonotariou E, Varlamis S, Poulou A, Vasilaki O, Metallidis S, et al. Comparative evaluation of minocycline susceptibility testing methods in carbapenem-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 2016;48(3):321-3.  https://doi.org/10.1016/j.ijantimicag.2016.05.017  PMID: 27451087 
  35. Tsakris A, Koumaki V, Dokoumetzidis A. Minocycline susceptibility breakpoints for Acinetobacter baumannii: do we need to re-evaluate them? J Antimicrob Chemother. 2019;74(2):295-7.  https://doi.org/10.1093/jac/dky448  PMID: 30412249 
  36. Clinical Laboratory Standards (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, document M07, 11th ed. Wayne; CLSI; 2018.
  37. Clinical Laboratory Standards (CLSI). Performance standards for antimicrobial susceptibility testing, document M100, 34th ed. Wayne; CLSI; 2024.
/content/10.2807/1560-7917.ES.2024.29.28.2400019
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error