1887
Research Open Access
Like 0

Abstract

Background

The war in Ukraine led to migration of Ukrainian people. Early 2022, several European national surveillance systems detected multidrug-resistant (MDR) bacteria related to Ukrainian patients.

Aim

To investigate the genomic epidemiology of New Delhi metallo-β-lactamase (NDM)-producing from Ukrainian patients among European countries.

Methods

Whole-genome sequencing of 66 isolates sampled in 2022–2023 in 10 European countries enabled whole-genome multilocus sequence typing (wgMLST), identification of resistance genes, replicons, and plasmid reconstructions. Five -carrying- isolates underwent antimicrobial susceptibility testing (AST). Transferability to of a -carrying plasmid from a patient strain was assessed. Epidemiological characteristics of patients with NDM-producing were gathered by questionnaire.

Results

wgMLST of the 66 isolates revealed two genetic clusters unrelated to Ukraine and three linked to Ukrainian patients. Of these three, two comprised -carrying- and the third -carrying- The clusters (PstCluster-001, n = 22 isolates; PstCluster-002, n = 8 isolates) comprised strains from seven and four countries, respectively. The cluster (PstCluster-003) included 13 isolates from six countries. PstCluster-001 and PstCluster-002 isolates carried an MDR plasmid harbouring , , and , which was transferrable and, for some Ukrainian patients, shared by other Enterobacterales. AST revealed PstCluster-001 isolates to be extensively drug-resistant (XDR), but susceptible to cefiderocol and aztreonam–avibactam. Patients with data on age (n = 41) were 19–74 years old; of 49 with information on sex, 38 were male.

Conclusion

XDR were introduced into European countries, requiring increased awareness and precautions when treating patients from conflict-affected areas.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.23.2300616
2024-06-06
2025-01-12
/content/10.2807/1560-7917.ES.2024.29.23.2300616
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/23/eurosurv-29-23_4.html?itemId=/content/10.2807/1560-7917.ES.2024.29.23.2300616&mimeType=html&fmt=ahah

References

  1. Zwittink RD, Wielders CC, Notermans DW, Verkaik NJ, Schoffelen AF, Witteveen S, et al. , Dutch CPE and MRSA Surveillance Study Groups. Multidrug-resistant organisms in patients from Ukraine in the Netherlands, March to August 2022. Euro Surveill. 2022;27(50):2200896.  https://doi.org/10.2807/1560-7917.ES.2022.27.50.2200896  PMID: 36695467 
  2. Sandfort M, Hans JB, Fischer MA, Reichert F, Cremanns M, Eisfeld J, et al. Increase in NDM-1 and NDM-1/OXA-48-producing Klebsiella pneumoniae in Germany associated with the war in Ukraine, 2022. Euro Surveill. 2022;27(50):2200926.  https://doi.org/10.2807/1560-7917.ES.2022.27.50.2200926  PMID: 36695468 
  3. Stolberg RS, Hansen F, Porsbo LJ, Karstensen KT, Roer L, Holzknecht BJ, et al. Genotypic characterisation of carbapenemase-producing organisms obtained in Denmark from patients associated with the war in Ukraine. J Glob Antimicrob Resist. 2023;34:15-7.  https://doi.org/10.1016/j.jgar.2023.06.002  PMID: 37315739 
  4. Abdallah M, Balshi A. First literature review of carbapenem-resistant Providencia. New Microbes New Infect. 2018;25:16-23.  https://doi.org/10.1016/j.nmni.2018.05.009  PMID: 29983987 
  5. Liu J, Wang R, Fang M. Clinical and drug resistance characteristics of Providencia stuartii infections in 76 patients. J Int Med Res. 2020;48(10):300060520962296.  https://doi.org/10.1177/0300060520962296  PMID: 33081537 
  6. Manageiro V, Sampaio DA, Pereira P, Rodrigues P, Vieira L, Palos C, et al. Draft Genome Sequence of the First NDM-1-Producing Providencia stuartii Strain Isolated in Portugal. Genome Announc. 2015;3(5):e01077-15.  https://doi.org/10.1128/genomeA.01077-15  PMID: 26404603 
  7. Molnár S, Flonta MMM, Almaş A, Buzea M, Licker M, Rus M, et al. Dissemination of NDM-1 carbapenemase-producer Providencia stuartii strains in Romanian hospitals: a multicentre study. J Hosp Infect. 2019;103(2):165-9.  https://doi.org/10.1016/j.jhin.2019.04.015  PMID: 31039380 
  8. Dong X, Jia H, Yu Y, Xiang Y, Zhang Y. Genomic revisitation and reclassification of the genus Providencia. mSphere. 2024;9(3):e0073123. PMID: 38412041 
  9. Oikonomou O, Liakopoulos A, Phee LM, Betts J, Mevius D, Wareham DW. Providencia stuartii Isolates from Greece: Co-Carriage of Cephalosporin (blaSHV-5, blaVEB-1), Carbapenem (blaVIM-1), and Aminoglycoside (rmtB) Resistance Determinants by a Multidrug-Resistant Outbreak Clone. Microb Drug Resist. 2016;22(5):379-86.  https://doi.org/10.1089/mdr.2015.0215  PMID: 27380549 
  10. Hoard A, Montaña S, Moriano A, Fernandez JS, Traglia GM, Quiroga C, et al. Genomic Analysis of two NDM-1 Providencia stuartii Strains Recovered from a Single Patient. Curr Microbiol. 2020;77(12):4029-36.  https://doi.org/10.1007/s00284-020-02242-6  PMID: 33048176 
  11. Mnif B, Ktari S, Chaari A, Medhioub F, Rhimi F, Bouaziz M, et al. Nosocomial dissemination of Providencia stuartii isolates carrying blaOXA-48, blaPER-1, blaCMY-4 and qnrA6 in a Tunisian hospital. J Antimicrob Chemother. 2013;68(2):329-32.  https://doi.org/10.1093/jac/dks386  PMID: 23014719 
  12. Zavascki AP, Carvalhaes CG, da Silva GL, Tavares Soares SP, de Alcântara LR, Elias LS, et al. Outbreak of carbapenem-resistant Providencia stuartii in an intensive care unit. Infect Control Hosp Epidemiol. 2012;33(6):627-30.  https://doi.org/10.1086/665730  PMID: 22561721 
  13. Capitani V, Arcari G, Oliva A, Sacco F, Menichincheri G, Fenske L, et al. Genome-Based Retrospective Analysis of a Providencia stuartii Outbreak in Rome, Italy: Broad Spectrum IncC Plasmids Spread the NDM Carbapenemase within the Hospital. Antibiotics (Basel). 2023;12(5):943.  https://doi.org/10.3390/antibiotics12050943  PMID: 37237846 
  14. Hendrickx APA, Landman F, de Haan A, Witteveen S, van Santen-Verheuvel MG, Schouls LM, The Dutch Cpe Surveillance Study Group. blaOXA-48-like genome architecture among carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the Netherlands. Microb Genom. 2021;7(5):000512.  https://doi.org/10.1099/mgen.0.000512  PMID: 33961543 
  15. Caméléna F, Morel F, Merimèche M, Decousser JW, Jacquier H, Clermont O, et al. , IAME Resistance Group. Genomic characterization of 16S rRNA methyltransferase-producing Escherichia coli isolates from the Parisian area, France. J Antimicrob Chemother. 2020;75(7):1726-35.  https://doi.org/10.1093/jac/dkaa105  PMID: 32300786 
  16. Wang P, Li C, Yin Z, Jiang X, Li X, Mu X, et al. Genomic epidemiology and heterogeneity of Providencia and their blaNDM-1-carrying plasmids. Emerg Microbes Infect. 2023;12(2):2275596.  https://doi.org/10.1080/22221751.2023.2275596  PMID: 37874004 
  17. Barton BM, Harding GP, Zuccarelli AJ. A general method for detecting and sizing large plasmids. Anal Biochem. 1995;226(2):235-40.  https://doi.org/10.1006/abio.1995.1220  PMID: 7793624 
  18. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. PMID: 21793988 
/content/10.2807/1560-7917.ES.2024.29.23.2300616
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error