1887
Surveillance Open Access
Like 0

Abstract

Background

The COVID-19 pandemic was largely driven by genetic mutations of SARS-CoV-2, leading in some instances to enhanced infectiousness of the virus or its capacity to evade the host immune system. To closely monitor SARS-CoV-2 evolution and resulting variants at genomic-level, an innovative pipeline termed SARSeq was developed in Austria.

Aim

We discuss technical aspects of the SARSeq pipeline, describe its performance and present noteworthy results it enabled during the pandemic in Austria.

Methods

The SARSeq pipeline was set up as a collaboration between private and public clinical diagnostic laboratories, a public health agency, and an academic institution. Representative SARS-CoV-2 positive specimens from each of the nine Austrian provinces were obtained from SARS-CoV-2 testing laboratories and processed centrally in an academic setting for S-gene sequencing and analysis.

Results

SARS-CoV-2 sequences from up to 2,880 cases weekly resulted in 222,784 characterised case samples in January 2021–March 2023. Consequently, Austria delivered the fourth densest genomic surveillance worldwide in a very resource-efficient manner. While most SARS-CoV-2 variants during the study showed comparable kinetic behaviour in all of Austria, some, like Beta, had a more focused spread. This highlighted multifaceted aspects of local population-level acquired immunity. The nationwide surveillance system enabled reliable nowcasting. Measured early growth kinetics of variants were predictive of later incidence peaks.

Conclusion

With low automation, labour, and cost requirements, SARSeq is adaptable to monitor other pathogens and advantageous even for resource-limited countries. This multiplexed genomic surveillance system has potential as a rapid response tool for future emerging threats.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.23.2300542
2024-06-06
2025-01-13
/content/10.2807/1560-7917.ES.2024.29.23.2300542
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/23/eurosurv-29-23_3.html?itemId=/content/10.2807/1560-7917.ES.2024.29.23.2300542&mimeType=html&fmt=ahah

References

  1. European Commission. A united front to beat COVID-19. 2021. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0035
  2. Illumina. Illumina COVIDSeq Test. Available from: https://emea.illumina.com/products/by-type/ivd-products/covidseq.html
  3. Itokawa K, Sekizuka T, Hashino M, Tanaka R, Kuroda M. Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR. PLoS One. 2020;15(9):e0239403.  https://doi.org/10.1371/journal.pone.0239403  PMID: 32946527 
  4. Quick J. nCoV-2019 sequencing protocol V.1. Protocols.io. 2020.  https://doi.org/10.17504/protocols.io.bbmuik6w  https://doi.org/10.17504/protocols.io.bbmuik6w 
  5. Seemann T, Lane CR, Sherry NL, Duchene S, Gonçalves da Silva A, Caly L, et al. Tracking the COVID-19 pandemic in Australia using genomics. Nat Commun. 2020;11(1):4376.  https://doi.org/10.1038/s41467-020-18314-x  PMID: 32873808 
  6. Bhoyar RC, Jain A, Sehgal P, Divakar MK, Sharma D, Imran M, et al. High throughput detection and genetic epidemiology of SARS-CoV-2 using COVIDSeq next generation sequencing. PLoS One. 2021;16(2):e0247115.  https://doi.org/10.1371/journal.pone.0247115  PMID: 33596239 
  7. Frampton D, Rampling T, Cross A, Bailey H, Heaney J, Byott M, et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect Dis. 2021;21(9):1246-56.  https://doi.org/10.1016/S1473-3099(21)00170-5  PMID: 33857406 
  8. Popa A, Genger JW, Nicholson MD, Penz T, Schmid D, Aberle SW, et al. Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Sci Transl Med. 2020;12(573):eabe2555.  https://doi.org/10.1126/scitranslmed.abe2555  PMID: 33229462 
  9. Washington NL, Gangavarapu K, Zeller M, Bolze A, Cirulli ET, Schiabor Barrett KM, et al. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell. 2021;184(10):2587-2594.e7.  https://doi.org/10.1016/j.cell.2021.03.052  PMID: 33861950 
  10. Banu S, Jolly B, Mukherjee P, Singh P, Khan S, Zaveri L, et al. A Distinct Phylogenetic Cluster of Indian Severe Acute Respiratory Syndrome Coronavirus 2 Isolates. Open Forum Infect Dis. 2020;7(11):ofaa434.  https://doi.org/10.1093/ofid/ofaa434  PMID: 33200080 
  11. GISAID. hCoV-19 Variants Dashboard. [Accessed 08 May 2024]. Available from: https://gisaid.org/hcov-19-variants-dashboard/
  12. Adepoju P. Challenges of SARS-CoV-2 genomic surveillance in Africa. Lancet Microbe. 2021;2(4):e139.  https://doi.org/10.1016/S2666-5247(21)00065-3  PMID: 33817677 
  13. Yelagandula R, Bykov A, Vogt A, Heinen R, Özkan E, Strobl MM, et al. , VCDI. Multiplexed detection of SARS-CoV-2 and other respiratory infections in high throughput by SARSeq. Nat Commun. 2021;12(1):3132.  https://doi.org/10.1038/s41467-021-22664-5  PMID: 34035246 
  14. Wayne DW. Biostatistics: A Foundation for Analysis in the Health Sciences. Sons JW&, editor. Vol. 3. 1999.
  15. European Centre for Disease Prevention and Control (ECDC). Guidance for representative and targeted genomic SARS-CoV-2 monitoring. Stockholm: ECDC. 2021.
  16. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell. 2020;182(5):1284-1294.e9.  https://doi.org/10.1016/j.cell.2020.07.012  PMID: 32730807 
  17. Gobeil SMC, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, et al. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science. 2021;373(6555):eabi6226.  https://doi.org/10.1126/science.abi6226  PMID: 34168071 
  18. Centers for Disease Control and Prevention (CDC). 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel. Atlanta: CDC. Available from: https://www.fda.gov/media/134922/download
  19. ARTIC. Pangolin web application release 2020. Available from: https://virological.org/t/pangolin-web-application-release/482
  20. Greco S, Gerdol M. Independent acquisition of short insertions at the RIR1 site in the spike N-terminal domain of the SARS-CoV-2 BA.2 lineage. Transbound Emerg Dis. 2022;69(5):e3408-15.  https://doi.org/10.1111/tbed.14672  PMID: 35908169 
  21. Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall A. Convergent Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves Emerge. Int J Mol Sci. 2023;24(3):2264.  https://doi.org/10.3390/ijms24032264  PMID: 36768588 
  22. Roemer C, Hisner R, Frohberg N, Sakaguchi H, Gueli F, Peacock TP. SARS-CoV-2 evolution, post-Omicron. Available from: https://virological.org/t/sars-cov-2-evolution-post-omicron/911
  23. Mathieu E, Ritchie H, Rodés-Guirao L, Appel C, Giattino C, Hasell J, et al. Coronavirus Pandemic (COVID-19) 2020. Available from: https://ourworldindata.org/coronavirus
  24. Amman F, Markt R, Endler L, Hupfauf S, Agerer B, Schedl A, et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol. 2022;40(12):1814-22.  https://doi.org/10.1038/s41587-022-01387-y  PMID: 35851376 
  25. Provinces of Austria. Available from: https://en.wikipedia.org/wiki/Provinces_of_Austria
  26. Paetzold J, Kimpel J, Bates K, Hummer M, Krammer F, von Laer D, et al. Impacts of rapid mass vaccination against SARS-CoV2 in an early variant of concern hotspot. Nat Commun. 2022;13(1):612.  https://doi.org/10.1038/s41467-022-28233-8  PMID: 35105889 
  27. COVID-19-Virusvariantenverordnung– COVID-19-VvV. [COVID-19 Virus Variants Regulation]. Available from: https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2021_II_63/BGBLA_2021_II_63.pdfsig
  28. World Health Organization (WHO). COVID-19 Weekly Epidemiological Update Edition 55; 31 August 2021. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---31-august-2021
  29. Zaman MH, Ali N, Ilyas M. "Disease X" and prevention policies. Front Public Health. 2024;12:1303584.  https://doi.org/10.3389/fpubh.2024.1303584  PMID: 38500724 
/content/10.2807/1560-7917.ES.2024.29.23.2300542
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error