1887
Rapid communication Open Access
Like 0

Abstract

In 2023, an increase of OXA-48-producing was noticed by the Lithuanian National Public Health Surveillance Laboratory. Whole genome sequencing (WGS) of 106 OXA-48-producing isolates revealed three distinct clusters of carbapenemase-producing high-risk clones, including sequence type (ST) 45 (n = 35 isolates), ST392 (n = 32) and ST395 (n = 28), involving six, six and nine hospitals in different regions, respectively. These results enabled targeted investigation and control, and underscore the value of national WGS-based surveillance for antimicrobial resistance.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.16.2400188
2024-04-18
2024-11-07
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.16.2400188
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/16/eurosurv-29-16_3.html?itemId=/content/10.2807/1560-7917.ES.2024.29.16.2400188&mimeType=html&fmt=ahah

References

  1. Ministry of Health of the Republic of Lithuania. Lietuvos Respublikos sveikatos apsaugos ministro įsakymas Nr. V-1194, priimtas 2013 m. gruodžio 18 d. Dėl Kliniškai ir epidemiologiškai svarbių mikroorganizmų atsparumo antimikrobiniams vaistams stebėsenos ir duomenų apie mikroorganizmų atsparumą antimikrobiniams vaistams rinkimo, kaupimo, analizės ir informacijos pateikimo tvarkos aprašo patvirtinimo. [Order No. V-1194 of the Minister of Health of the Republic of Lithuania of 18 December 2013. A description of procedures for the monitoring of antimicrobial resistance in clinically and epidemiologically relevant microorganisms and for the collection, compilation, analysis and reporting of antimicrobial resistance data]. Vilnius: Ministry of Health of the Republic of Lithuania; Register of Legal Acts. 31.12.2013: 2013-00188. Lithuanian. Available from: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.463410/dqbCGVGruC
  2. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST clinical breakpoints - Version 14.0. Växjö: EUCAST; 2024. Available from: https://www.eucast.org/clinical_breakpoints
  3. Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, et al. Updating benchtop sequencing performance comparison. Nat Biotechnol. 2013;31(4):294-6.  https://doi.org/10.1038/nbt.2522  PMID: 23563421 
  4. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol. 2018;19(1):153.  https://doi.org/10.1186/s13059-018-1540-z  PMID: 30286803 
  5. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178-82.  https://doi.org/10.1128/JCM.43.8.4178-4182.2005  PMID: 16081970 
  6. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH, et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep. 2021;11(1):12728.  https://doi.org/10.1038/s41598-021-91456-0  PMID: 34135355 
  7. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1):4188.  https://doi.org/10.1038/s41467-021-24448-3  PMID: 34234121 
  8. European Centre for Disease Prevention and Control (ECDC). Rapid risk assessment: Combined clonal and plasmid-mediated outbreak of carbapenemase-producing Enterobacterales, Lithuania, 2019-2020. Stockholm: ECDC; 2020. Available at: https://www.ecdc.europa.eu/en/publications-data/combined-clonal-and-plasmid-mediated-outbreak-carbapenemase-producing
  9. Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog Glob Health. 2023;117(4):328-41.  https://doi.org/10.1080/20477724.2022.2121362  PMID: 36089853 
  10. David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919-29.  https://doi.org/10.1038/s41564-019-0492-8  PMID: 31358985 
  11. Literacka E, Izdebski R, Urbanowicz P, Żabicka D, Klepacka J, Sowa-Sierant I, et al. Spread of Klebsiella pneumoniae ST45 producing GES-5 carbapenemase or GES-1 extended-spectrum β-lactamase in newborns and infants. Antimicrob Agents Chemother. 2020;64(9):e00595-20.  https://doi.org/10.1128/AAC.00595-20  PMID: 32631822 
  12. Di Mento G, Cuscino N, Carcione C, Cardinale F, Conaldi PG, Douradinha B. Emergence of a Klebsiella pneumoniae ST392 clone harbouring KPC-3 in an Italian transplantation hospital. J Hosp Infect. 2018;98(3):313-4.  https://doi.org/10.1016/j.jhin.2017.11.019  PMID: 29208405 
  13. European Centre for Disease Prevention and Control. Rapid risk assessment: carbapenemase-producing (OXA-48) Klebsiella pneumoniae ST392 in travellers previously hospitalised in Gran Canaria, Spain. Stockholm: ECDC; 2018. Available at: https://ecdc.europa.eu/sites/portal/files/documents/28-06-2018-RRA-Klebsiella-pneumoniae-Spain-Sweden-Finland-Norway.pdf
  14. Shaidullina ER, Schwabe M, Rohde T, Shapovalova VV, Dyachkova MS, Matsvay AD, et al. Genomic analysis of the international high-risk clonal lineage Klebsiella pneumoniae sequence type 395. Genome Med. 2023;15(1):9.  https://doi.org/10.1186/s13073-023-01159-6  PMID: 36782220 
  15. Izdebski R, Baraniak A, Zabicka D, Machulska M, Urbanowicz P, Fiett J, et al. Enterobacteriaceae producing OXA-48-like carbapenemases in Poland, 2013-January 2017. J Antimicrob Chemother. 2018;73(3):620-5.  https://doi.org/10.1093/jac/dkx457  PMID: 29237086 
  16. Sandfort M, Hans JB, Fischer MA, Reichert F, Cremanns M, Eisfeld J, et al. Increase in NDM-1 and NDM-1/OXA-48-producing Klebsiella pneumoniae in Germany associated with the war in Ukraine, 2022. Euro Surveill. 2022;27(50):2200926.  https://doi.org/10.2807/1560-7917.ES.2022.27.50.2200926  PMID: 36695468 
  17. Wong JLC, Romano M, Kerry LE, Kwong HS, Low WW, Brett SJ, et al. OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo. Nat Commun. 2019;10(1):3957.  https://doi.org/10.1038/s41467-019-11756-y  PMID: 31477712 
  18. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA. 2015;112(27):E3574-81.  https://doi.org/10.1073/pnas.1501049112  PMID: 26100894 
/content/10.2807/1560-7917.ES.2024.29.16.2400188
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error