1887
Research Open Access
Like 0

Abstract

Introduction

Two large multicentre European hospital networks have estimated vaccine effectiveness (VE) against COVID-19 since 2021.

Aim

We aimed to measure VE against PCR-confirmed SARS-CoV-2 in hospitalised severe acute respiratory illness (SARI) patients ≥ 20 years, combining data from these networks during Alpha (March–June)- and Delta (June–December)-dominant periods, 2021.

Methods

Forty-six participating hospitals across 14 countries follow a similar generic protocol using the test-negative case–control design. We defined complete primary series vaccination (PSV) as two doses of a two-dose or one of a single-dose vaccine ≥ 14 days before onset.

Results

We included 1,087 cases (538 controls) and 1,669 cases (1,442 controls) in the Alpha- and Delta-dominant periods, respectively. During the Alpha period, VE against hospitalisation with SARS-CoV2 for complete Comirnaty PSV was 85% (95% CI: 69–92) overall and 75% (95% CI: 42–90) in those aged ≥ 80 years. During the Delta period, among SARI patients ≥ 20 years with symptom onset ≥ 150 days from last PSV dose, VE for complete Comirnaty PSV was 54% (95% CI: 18–74). Among those receiving Comirnaty PSV and mRNA booster (any product) ≥ 150 days after last PSV dose, VE was 91% (95% CI: 57–98). In time-since-vaccination analysis, complete all-product PSV VE was > 90% in those with their last dose < 90 days before onset; ≥ 70% in those 90–179 days before onset.

Conclusions

Our results from this EU multi-country hospital setting showed that VE for complete PSV alone was higher in the Alpha- than the Delta-dominant period, and addition of a first booster dose during the latter period increased VE to over 90%.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.47.2300186
2023-11-23
2024-12-26
/content/10.2807/1560-7917.ES.2023.28.47.2300186
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/47/eurosurv-28-47-5.html?itemId=/content/10.2807/1560-7917.ES.2023.28.47.2300186&mimeType=html&fmt=ahah

References

  1. Harder T, Koch J, Vygen-Bonnet S, Külper-Schiek W, Pilic A, Reda S, et al. Efficacy and effectiveness of COVID-19 vaccines against SARS-CoV-2 infection: interim results of a living systematic review, 1 January to 14 May 2021. Euro Surveill. 2021;26(28):2100563.  https://doi.org/10.2807/1560-7917.ES.2021.26.28.2100563  PMID: 34269175 
  2. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403-16.  https://doi.org/10.1056/NEJMoa2035389  PMID: 33378609 
  3. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603-15.  https://doi.org/10.1056/NEJMoa2034577  PMID: 33301246 
  4. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384(23):2187-201.  https://doi.org/10.1056/NEJMoa2101544  PMID: 33882225 
  5. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99-111.  https://doi.org/10.1016/S0140-6736(20)32661-1  PMID: 33306989 
  6. World Health Organization WHO). Evaluation of COVID-19 vaccine effectiveness. Geneva: WHO; 2021. Available from: https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-vaccine_effectiveness-measurement-2021.1
  7. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021;21(10):626-36.  https://doi.org/10.1038/s41577-021-00592-1  PMID: 34373623 
  8. Epiconcept. European study of COVID-19 vaccine effectiveness against hospitalised SARI patients laboratory-confirmed with SARS-CoV-2. Draft generic protocol. Paris: Epiconcept; 2021. Available from: https://www.imoveflu.org/wp-content/uploads/2021/03/08feb2021_draft_generic_VE_protocol_hospital-based_COVID-19_v07.pdf
  9. European Centre for Disease Prevention and Control (ECDC). Core protocol for ECDC studies of COVID-19 vaccine effectiveness against hospitalisation with Severe Acute Respiratory Infection laboratory-confirmed with SARS-CoV-2, version 1.0. Stockholm: ECDC; 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/core-protocol-ecdc-studies-covid-19-vaccine-effectiveness-against-hospitalisation
  10. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494.  https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494  PMID: 28382917 
  11. Jackson ML, Nelson JC. The test-negative design for estimating influenza vaccine effectiveness. Vaccine. 2013;31(17):2165-8.  https://doi.org/10.1016/j.vaccine.2013.02.053  PMID: 23499601 
  12. Peralta-Santos A. Assessment of COVID-19 surveillance case definitions and data reporting in the European Union. Briefing requested by the ENVI committee. Brussels: European Parliament; July 2020. Available from: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/652725/IPOL_BRI(2020)652725_EN.pdf
  13. Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48(12):1503-10.  https://doi.org/10.1016/0895-4356(95)00048-8  PMID: 8543964 
  14. Covenay J. FIRTHLOGIT: Stata module to calculate bias reduction in logistic regression. Boston: Boston College Department of Economics; 2008. [Accessed: 3 Feb 2020]. Available from: https://econpapers.repec.org/software/bocbocode/s456948.htm
  15. World Health Organization (WHO). WHO surveillance case definitions for ILI and SARI. Geneva: WHO; 2014. Available from: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/case-definitions-for-ili-and-sari
  16. Feikin DR, Abu-Raddad LJ, Andrews N, Davies MA, Higdon MM, Orenstein WA, et al. Assessing vaccine effectiveness against severe COVID-19 disease caused by omicron variant. Report from a meeting of the World Health Organization. Vaccine. 2022;40(26):3516-27.  https://doi.org/10.1016/j.vaccine.2022.04.069  PMID: 35595662 
  17. Stowe J, Andrews N, Kirsebom F, Ramsay M, Bernal JL. Effectiveness of COVID-19 vaccines against Omicron and Delta hospitalisation, a test negative case-control study. Nat Commun. 2022;13(1):5736.  https://doi.org/10.1038/s41467-022-33378-7  PMID: 36180428 
  18. European Centre for Disease Prevention and Control (ECDC). Overview of the implementation of COVID-19 vaccination strategies and vaccine deployment plans in the EU/EEA. Stockholm: ECDC; 2021 [Accessed: 28 Mar 2021]. Available from: https://www.ecdc.europa.eu/en/publications-data/overview-implementation-covid-19-vaccination-strategies-and-vaccine-deployment
  19. European Centre for Disease Prevention and Control (ECDC). COVID-19 vaccine tracker. Stockholm: ECDC. [Accessed: 28 Mar 2021]. Available from: https://vaccinetracker.ecdc.europa.eu/public/extensions/COVID-19/vaccine-tracker.html#uptake-tab
  20. Tenforde MW, Patel MM, Ginde AA, Douin DJ, Talbot HK, Casey JD, et al. . Effectiveness of severe acute respiratory syndrome coronavirus 2 messenger rna vaccines for preventing coronavirus disease 2019 hospitalizations in the United States. Clin Infect Dis. 2022;74(9):1515-24.  https://doi.org/10.1093/cid/ciab687  PMID: 34358310 
  21. Liu Q, Qin C, Liu M, Liu J. Effectiveness and safety of SARS-CoV-2 vaccine in real-world studies: a systematic review and meta-analysis. Infect Dis Poverty. 2021;10(1):132.  https://doi.org/10.1186/s40249-021-00915-3  PMID: 34776011 
  22. Chung H, He S, Nasreen S, Sundaram ME, Buchan SA, Wilson SE, et al. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario, Canada: test negative design study. BMJ. 2021;374:n1943.  https://doi.org/10.1136/bmj.n1943  PMID: 34417165 
  23. Stowe J, Andrews N, Gower C, Gallagher E, Utsi L, Simmons R, et al. Effectiveness of COVID-19 vaccines against hospital admission with the Delta (B.1.617.2) variant. Public library. London: UK Health Security Agency. [Accessed: 1 Jan 2023]. Preprint. Available from: https://khub.net/web/phe-national/public-library/-/document_library/v2WsRK3ZlEig/view_file/479607329?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_v2WsRK3ZlEig_redirect=https%3A%2F%2Fkhub.net%3A443%2Fweb%2Fphe-national%2Fpublic-library%2F-%2Fdocument_library%2Fv2WsRK3ZlEig%2Fview%2F479607266
  24. Glatman-Freedman A, Bromberg M, Dichtiar R, Hershkovitz Y, Keinan-Boker L. The BNT162b2 vaccine effectiveness against new COVID-19 cases and complications of breakthrough cases: A nation-wide retrospective longitudinal multiple cohort analysis using individualised data. EBioMedicine. 2021;72:103574.  https://doi.org/10.1016/j.ebiom.2021.103574  PMID: 34537449 
  25. Gram MA, Emborg HD, Schelde AB, Friis NU, Nielsen KF, Moustsen-Helms IR, et al. Vaccine effectiveness against SARS-CoV-2 infection or COVID-19 hospitalization with the Alpha, Delta, or Omicron SARS-CoV-2 variant: A nationwide Danish cohort study. PLoS Med. 2022;19(9):e1003992.  https://doi.org/10.1371/journal.pmed.1003992  PMID: 36048766 
  26. Skowronski DM, Setayeshgar S, Zou M, Prystajecky N, Tyson JR, Galanis E, et al. Single-dose mRNA vaccine effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including Alpha and Gamma variants: a test-negative design in adults 70 years and older in British Columbia, Canada. Clin Infect Dis. 2022;74:(7):1158-65. PMID: 34244723 
  27. Skowronski DM, Setayeshgar S, Zou M, Prystajecky N, Tyson JR, Sbihi H, et al. Comparative single-dose mRNA and ChAdOx1 vaccine effectiveness against severe acute respiratory syndrome coronavirus 2, including variants of concern: test-negative design, British Columbia, Canada. J Infect Dis. 2022;226(1):485-96.  https://doi.org/10.1093/infdis/jiac023  PMID: 35084500 
  28. Starrfelt J, Danielsen AS, Buanes EA, Juvet LK, Lyngstad TM, GØI, et al. Age and product dependent vaccine effectiveness against SARS-CoV-2 infection and hospitalisation among adults in Norway: a national cohort study, July-November 2021. BMC Med. 2022;20(1):278.  https://doi.org/10.1186/s12916-022-02480-4  PMID: 36050718 
  29. Vokó Z, Kiss Z, Surján G, Surján O, Barcza Z, Wittmann I, et al. Effectiveness and waning of protection with different SARS-CoV-2 primary and booster vaccines during the Delta pandemic wave in 2021 in Hungary (HUN-VE 3 study). Front Immunol. 2022;13:919408.  https://doi.org/10.3389/fimmu.2022.919408  PMID: 35935993 
  30. Puranik A, Lenehan PJ, Silvert E, Niesen MJM, Corchado-Garcia J, O’Horo JC, et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv; 2021.08.06.21261707.  https://doi.org/http://dx.doi.org/10.1101/2021.08.06 
  31. Skowronski DM, Febriani Y, Ouakki M, Setayeshgar S, El Adam S, Zou M, et al. Two-dose severe acute respiratory syndrome coronavirus 2 vaccine effectiveness with mixed schedules and extended dosing intervals: test-negative design studies from British Columbia and Quebec, Canada. Clin Infect Dis. 2022;75(11):1980-92.  https://doi.org/10.1093/cid/ciac290  PMID: 35438175 
  32. Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Haas EJ, et al. Waning immunity after the BNT162b2 vaccine in Israel. N Engl J Med. 2021;385(24):e85.  https://doi.org/10.1056/NEJMoa2114228  PMID: 34706170 
  33. Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, et al. Duration of protection against mild and severe disease by Covid-19 vaccines. N Engl J Med. 2022;386(4):340-50.  https://doi.org/10.1056/NEJMoa2115481  PMID: 35021002 
  34. Feikin DR, Higdon MM, Abu-Raddad LJ, Andrews N, Araos R, Goldberg Y, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet. 2022;399(10328):924-44.  https://doi.org/10.1016/S0140-6736(22)00152-0  PMID: 35202601 
/content/10.2807/1560-7917.ES.2023.28.47.2300186
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error