1887
Research Open Access
Like 0

Abstract

Background

The earliest recognised infections by the SARS-CoV-2 Omicron variant (Pango lineage B.1.1.529) in Belgium and Switzerland suggested a connection to an international water polo tournament, held 12–14 November 2021 in Brno, Czechia.

Aim

To study the arrival and subsequent spread of the Omicron variant in Belgium and Switzerland, and understand the overall importance of this international sporting event on the number of infections in the two countries.

Methods

We performed intensive forward and backward contact tracing in both countries, supplemented by phylogenetic investigations using virus sequences of the suspected infection chain archived in public databases.

Results

Through contact tracing, we identified two and one infected athletes of the Belgian and Swiss water polo teams, respectively, and subsequently also three athletes from Germany. In Belgium and Switzerland, four and three secondary infections, and three and one confirmed tertiary infections were identified. Phylogenetic investigation demonstrated that this sporting event played a role as the source of infection, but without a direct link with infections from South Africa and not as a superspreading event; the virus was found to already be circulating at that time in the countries involved.

Conclusion

The SARS-CoV-2 Omicron variant started to circulate in Europe several weeks before its identification in South Africa on 24 November 2021. Accordingly, it can be assumed that travel restrictions are usually implemented too late to prevent the spread of newly detected SARS-CoV-2 variants to other regions. Phylogenetic analysis may modify the perception of an apparently clear result of intensive contact tracing.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.45.2300018
2023-11-09
2024-12-26
/content/10.2807/1560-7917.ES.2023.28.45.2300018
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/45/eurosurv-28-45-2.html?itemId=/content/10.2807/1560-7917.ES.2023.28.45.2300018&mimeType=html&fmt=ahah

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.
  2. World Health Organization (WHO). Timeline: WHO's Covid-19 response. Geneva: WHO. [Accessed: 18 Oct 2023]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline#event-72
  3. World Health Organization. Coronavirus (COVID-19) dashboard. Geneva: WHO. [Accessed: 19 Oct 2023]. Available from: https://covid19.who.int
  4. Ma K, Chen J. Omicron XE emerges as SARS-CoV-2 keeps evolving. Innovation (Camb). 2022;3(3):100248.  https://doi.org/10.1016/j.xinn.2022.100248  PMID: 35464633 
  5. European Centre for Disease Prevention and Control (ECDC). SARS-CoV-2 variants of concern as of 12 May 2022. Stockholm: ECDC; 2022. Available from: https://www.ecdc.europa.eu/en/covid-19/variants-concern
  6. Aleem A, Akbar Samad AB, Vaqar S. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). 2023 May 8. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. Available from: https://www.ncbi.nlm.nih.gov/books/NBK570580
  7. Veldhoen M, Simas JP. Endemic SARS-CoV-2 will maintain post-pandemic immunity. Nat Rev Immunol. 2021;21(3):131-2.  https://doi.org/10.1038/s41577-020-00493-9  PMID: 33402727 
  8. Zhang L, Li Q, Liang Z, Li T, Liu S, Cui Q, et al. The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerg Microbes Infect. 2022;11(1):1-5.  https://doi.org/10.1080/22221751.2021.2017757  PMID: 34890524 
  9. Metzger CMJA, Lienhard R, Seth-Smith HMB, Roloff T, Wegner F, Sieber J, et al. PCR performance in the SARS-CoV-2 Omicron variant of concern? Swiss Med Wkly. 2021;151(4950):w30120.  https://doi.org/10.4414/SMW.2021.w30120  PMID: 34909869 
  10. Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet. 2022;399(10323):437-46.  https://doi.org/10.1016/S0140-6736(22)00017-4  PMID: 35065011 
  11. Wang L, Cheng G. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J Med Virol. 2022;94(4):1728-33.  https://doi.org/10.1002/jmv.27516  PMID: 34897752 
  12. Koelle K, Martin MA, Antia R, Lopman B, Dean NE. The changing epidemiology of SARS-CoV-2. Science. 2022;375(6585):1116-21.  https://doi.org/10.1126/science.abm4915  PMID: 35271324 
  13. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494.  https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494  PMID: 28382917 
  14. Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of SARS-CoV-2: a review of viral, host, and environmental factors. Ann Intern Med. 2021;174(1):69-79.  https://doi.org/10.7326/M20-5008  PMID: 32941052 
  15. Majra D, Benson J, Pitts J, Stebbing J. SARS-CoV-2 (COVID-19) superspreader events. J Infect. 2021;82(1):36-40.  https://doi.org/10.1016/j.jinf.2020.11.021  PMID: 33245943 
  16. Alahmari AA, Khan AA, Alamri FA, Almuzaini YS, Habash AK, Jokhdar H. Healthcare policies, precautionary measures and outcomes of mass gathering events in the era of COVID-19 pandemic: Expedited review. J Infect Public Health. 2023;S1876-0341(23)00106-5.  https://doi.org/10.1016/j.jiph.2023.03.026  PMID: 37059635 
  17. Pauser J, Schwarz C, Morgan J, Jantsch J, Brem M. SARS-CoV-2 transmission during an indoor professional sporting event. Sci Rep. 2021;11(1):20723.  https://doi.org/10.1038/s41598-021-99997-0  PMID: 34671096 
  18. Murray MT, Riggs MA, Engelthaler DM, Johnson C, Watkins S, Longenberger A, et al. Mitigating a COVID-19 Outbreak Among Major League Baseball Players - United States, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(42):1542-6.  https://doi.org/10.15585/mmwr.mm6942a4  PMID: 33090983 
  19. Burak KW, Law S, Rice C, Hu J, Fung CI, Woo AKH, et al. COVID-19 outbreak among physicians at a Canadian curling bonspiel: a descriptive observational study. CMAJ Open. 2021;9(1):E87-95.  https://doi.org/10.9778/cmajo.20200115  PMID: 33563638 
  20. Ruiz-Lozano RE, Cardenas-De La Garza JA, Ibarra-Nava I, Garza-Garza LA, Hernández-Camarena JC. The role of football as a super-spreading event in the SARS-CoV-2 pandemic. J Sports Med Phys Fitness. 2020;60(10):1408-9.  https://doi.org/10.23736/S0022-4707.20.11267-2  PMID: 33153256 
  21. Yaacoub S, Khabsa J, El-Khoury R, El-Harakeh A, Lotfi T, Saad Z, et al. COVID-19 transmission during swimming-related activities: a rapid systematic review. BMC Infect Dis. 2021;21(1):1112.  https://doi.org/10.1186/s12879-021-06802-4  PMID: 34711198 
  22. Kojaku S, Hébert-Dufresne L, Mones E, Lehmann S, Ahn YY. The effectiveness of backward contact tracing in networks. Nat Phys. 2021;17(5):652-8.  https://doi.org/10.1038/s41567-021-01187-2  PMID: 34367312 
  23. Pozo-Martin F, Beltran Sanchez MA, Müller SA, Diaconu V, Weil K, El Bcheraoui C. Comparative effectiveness of contact tracing interventions in the context of the COVID-19 pandemic: a systematic review. Eur J Epidemiol. 2023;38(3):243-66.  https://doi.org/10.1007/s10654-023-00963-z  PMID: 36795349 
  24. Walker A, Houwaart T, Wienemann T, Vasconcelos MK, Strelow D, Senff T, et al. Genetic structure of SARS-CoV-2 reflects clonal superspreading and multiple independent introduction events, North-Rhine Westphalia, Germany, February and March 2020. Euro Surveill. 2020;25(22):2000746.  https://doi.org/10.2807/1560-7917.ES.2020.25.22.2000746  PMID: 32524946 
  25. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2(4):e000056.  https://doi.org/10.1099/mgen.0.000056  PMID: 28348851 
  26. Paradis E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics. 2010;26(3):419-20.  https://doi.org/10.1093/bioinformatics/btp696  PMID: 20080509 
  27. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy 2008). Available from: https://conference.scipy.org/proceedings/SciPy2008/paper_2
  28. Hunter JD, J. D. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;9(3):90-5.  https://doi.org/10.1109/MCSE.2007.55 
  29. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30(5):1188-95.  https://doi.org/10.1093/molbev/mst024  PMID: 23418397 
  30. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1):vey016.  https://doi.org/10.1093/ve/vey016  PMID: 29942656 
  31. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67(5):901-4.  https://doi.org/10.1093/sysbio/syy032  PMID: 29718447 
  32. O’Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol. 2021;7(2):veab064.  https://doi.org/10.1093/ve/veab064  PMID: 34527285 
  33. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494.  https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494  PMID: 28382917 
  34. Salipante SJ, Hall BG. Inadequacies of minimum spanning trees in molecular epidemiology. J Clin Microbiol. 2011;49(10):3568-75.  https://doi.org/10.1128/JCM.00919-11  PMID: 21849692 
  35. Berggreen H, Løvestad AH, Helmersen K, Jørgensen SB, Aamot HV. Lessons learned: use of WGS in real-time investigation of suspected intrahospital SARS-CoV-2 outbreaks. J Hosp Infect. 2023;131:81-8.  https://doi.org/10.1016/j.jhin.2022.10.003  PMID: 36404573 
  36. Morel B, Barbera P, Czech L, Bettisworth B, Hübner L, Lutteropp S, et al. Phylogenetic analysis of SARS-CoV-2 data is difficult. Mol Biol Evol. 2021;38(5):1777-91.  https://doi.org/10.1093/molbev/msaa314  PMID: 33316067 
/content/10.2807/1560-7917.ES.2023.28.45.2300018
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error