-
Ecological and environmental factors affecting the risk of tick-borne encephalitis in Europe, 2017 to 2021
- Francesca Dagostin1 , Valentina Tagliapietra1 , Giovanni Marini1 , Claudia Cataldo2 , Maria Bellenghi2 , Scilla Pizzarelli3 , Rosaria Rosanna Cammarano3 , William Wint4 , Neil S Alexander4 , Markus Neteler5 , Julia Haas5 , Timothée Dub6 , Luca Busani2 , Annapaola Rizzoli1
-
View Affiliations Hide AffiliationsAffiliations: 1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy 2 Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy 3 Knowledge Unit (Documentation, Library), Istituto Superiore di Sanità, Rome, Italy 4 Environmental Research Group Oxford Ltd, Oxford, United Kingdom 5 mundialis GmbH & Co. KG, Bonn, Germany 6 Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, FinlandFrancesca Dagostinfrancesca.dagostin fmach.it
-
View Citation Hide Citation
Citation style for this article: Dagostin Francesca, Tagliapietra Valentina, Marini Giovanni, Cataldo Claudia, Bellenghi Maria, Pizzarelli Scilla, Cammarano Rosaria Rosanna, Wint William, Alexander Neil S, Neteler Markus, Haas Julia, Dub Timothée, Busani Luca, Rizzoli Annapaola. Ecological and environmental factors affecting the risk of tick-borne encephalitis in Europe, 2017 to 2021. Euro Surveill. 2023;28(42):pii=2300121. https://doi.org/10.2807/1560-7917.ES.2023.28.42.2300121 Received: 17 Feb 2023; Accepted: 11 May 2023
Abstract
Tick-borne encephalitis (TBE) is a disease which can lead to severe neurological symptoms, caused by the TBE virus (TBEV). The natural transmission cycle occurs in foci and involves ticks as vectors and several key hosts that act as reservoirs and amplifiers of the infection spread. Recently, the incidence of TBE in Europe has been rising in both endemic and new regions.
In this study we want to provide comprehensive understanding of the main ecological and environmental factors that affect TBE spread across Europe.
We searched available literature on covariates linked with the circulation of TBEV in Europe. We then assessed the best predictors for TBE incidence in 11 European countries by means of statistical regression, using data on human infections provided by the European Surveillance System (TESSy), averaged between 2017 and 2021.
We retrieved data from 62 full-text articles and identified 31 different covariates associated with TBE occurrence. Finally, we selected eight variables from the best model, including factors linked to vegetation cover, climate, and the presence of tick hosts.
The existing literature is heterogeneous, both in study design and covariate types. Here, we summarised and statistically validated the covariates affecting the variability of TBEV across Europe. The analysis of the factors enhancing disease emergence is a fundamental step towards the identification of potential hotspots of viral circulation. Hence, our results can support modelling efforts to estimate the risk of TBEV infections and help decision-makers implement surveillance and prevention campaigns.
Article metrics loading...
Full text loading...
References
-
Gritsun TS, Lashkevich VA, Gould EA. Tick-borne encephalitis. Antiviral Res. 2003;57(1-2):129-46. https://doi.org/10.1016/S0166-3542(02)00206-1 PMID: 12615309
-
Růžek D, Dobler G, Donoso Mantke O. Tick-borne encephalitis: pathogenesis and clinical implications. Travel Med Infect Dis. 2010;8(4):223-32. https://doi.org/10.1016/j.tmaid.2010.06.004 PMID: 20970725
-
Ruzek D, Avšič Županc T, Borde J, Chrdle A, Eyer L, Karganova G, et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019;164:23-51. https://doi.org/10.1016/j.antiviral.2019.01.014 PMID: 30710567
-
Ličková M, Fumačová Havlíková S, Sláviková M, Klempa B. Alimentary Infections by tick-borne encephalitis Virus. Viruses. 2021;14(1):56. https://doi.org/10.3390/v14010056 PMID: 35062261
-
Dobler G, Hufert F, Pfeffer M, Essbauer S. Tick-borne encephalitis: from microfocus to human disease. In: Mehlhorn H, editor. Progress in Parasitology. Berlin, Heidelberg: Springer; 2011. p. 323-31.
-
European Centre for Disease Prevention and Control (ECDC). Tick-borne encephalitis. In: ECDC. Annual epidemiological report for 2020. Stockholm: ECDC. 2022. Available from: https://www.ecdc.europa.eu/en/publications-data/tick-borne-encephalitis-annual-epidemiological-report-2020
-
Beauté J, Spiteri G, Warns-Petit E, Zeller H. Tick-borne encephalitis in Europe, 2012 to 2016. Euro Surveill. 2018;23(45):1800201. https://doi.org/10.2807/1560-7917.ES.2018.23.45.1800201 PMID: 30424829
-
Kreusch TM, Holding M, Hewson R, Harder T, Medlock JM, Hansford KM, et al. A probable case of tick-borne encephalitis (TBE) acquired in England, July 2019. Euro Surveill. 2019;24(47):1900679. https://doi.org/10.2807/1560-7917.ES.2019.24.47.1900679 PMID: 31771699
-
Stoefs A, Heyndrickx L, De Winter J, Coeckelbergh E, Willekens B, Alonso-Jiménez A, et al. Autochthonous cases of tick-borne encephalitis, Belgium, 2020. Emerg Infect Dis. 2021;27(8):2179-82. https://doi.org/10.3201/eid2708.211175 PMID: 34111382
-
Velay A, Solis M, Kack-Kack W, Gantner P, Maquart M, Martinot M, et al. A new hot spot for tick-borne encephalitis (TBE): A marked increase of TBE cases in France in 2016. Ticks Tick Borne Dis. 2018;9(1):120-5. https://doi.org/10.1016/j.ttbdis.2017.09.015 PMID: 28988602
-
Randolph SE, Asokliene L, Avsic-Zupanc T, Bormane A, Burri C, Gern L, et al. Variable spikes in tick-borne encephalitis incidence in 2006 independent of variable tick abundance but related to weather. Parasit Vectors. 2008;1(1):44. https://doi.org/10.1186/1756-3305-1-44 PMID: 19068106
-
Randolph SE, Rogers DJ. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc Biol Sci. 2000;267(1454):1741-4. https://doi.org/10.1098/rspb.2000.1204 PMID: 12233771
-
Rubel F, Brugger K. Tick-borne encephalitis incidence forecasts for Austria, Germany, and Switzerland. Ticks Tick Borne Dis. 2020;11(5):101437. https://doi.org/10.1016/j.ttbdis.2020.101437 PMID: 32723631
-
Brugger K, Walter M, Chitimia-Dobler L, Dobler G, Rubel F. Forecasting next season’s Ixodes ricinus nymphal density: the example of southern Germany 2018. Exp Appl Acarol. 2018;75(3):281-8. https://doi.org/10.1007/s10493-018-0267-6 PMID: 29846854
-
Cagnacci F, Bolzoni L, Rosà R, Carpi G, Hauffe HC, Valent M, et al. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: empirical assessment. Int J Parasitol. 2012;42(4):365-72. https://doi.org/10.1016/j.ijpara.2012.02.012 PMID: 22464896
-
Dub T, Ollgren J, Huusko S, Uusitalo R, Siljander M, Vapalahti O, et al. Game animal density, climate, and tick-borne encephalitis in Finland, 2007-2017. Emerg Infect Dis. 2020;26(12):2899-906. https://doi.org/10.3201/eid2612.191282 PMID: 33219653
-
Rizzoli A, Hauffe HC, Tagliapietra V, Neteler M, Rosà R. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS One. 2009;4(2):e4336. https://doi.org/10.1371/journal.pone.0004336 PMID: 19183811
-
Smura T, Tonteri E, Jääskeläinen A, von Troil G, Kuivanen S, Huitu O, et al. Recent establishment of tick-borne encephalitis foci with distinct viral lineages in the Helsinki area, Finland. Emerg Microbes Infect. 2019;8(1):675-83. https://doi.org/10.1080/22221751.2019.1612279 PMID: 31084456
-
Agergaard CN, Rosenstierne MW, Bødker R, Rasmussen M, Andersen PHS, Fomsgaard A. New tick-borne encephalitis virus hot spot in Northern Zealand, Denmark, October 2019. Euro Surveill. 2019;24(43):1900639. https://doi.org/10.2807/1560-7917.ES.2019.24.43.1900639 PMID: 31662158
-
Wallenhammar A, Lindqvist R, Asghar N, Gunaltay S, Fredlund H, Davidsson Å, et al. Revealing new tick-borne encephalitis virus foci by screening antibodies in sheep milk. Parasit Vectors. 2020;13(1):185. https://doi.org/10.1186/s13071-020-04030-4 PMID: 32268924
-
Danielová V, Schwarzová L, Materna J, Daniel M, Metelka L, Holubová J, et al. Tick-borne encephalitis virus expansion to higher altitudes correlated with climate warming. Int J Med Microbiol. 2008;298:68-72. https://doi.org/10.1016/j.ijmm.2008.02.005
-
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-73. https://doi.org/10.7326/M18-0850 PMID: 30178033
-
European Commission. Regulation (EC) No 1059/2003 of the European Parliament and of the Council of 26 May 2003 on the establishment of a common classification of territorial units for statistics (NUTS). Official Journal of the European Union. Luxembourg: Publications Office of the European Union. 21.06.2003:L 155. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003R1059
-
Tatem AJ. WorldPop, open data for spatial demography. Sci Data. 2017;4(1):170004. https://doi.org/10.1038/sdata.2017.4 PMID: 28140397
-
Wan Z, Hook S, Hulley G. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05 Deg CMG. V061. Sioux Falls: National Aeronautics and Space Administration. [Accessed: 11 Apr 2022]. Available from: https://lpdaac.usgs.gov/products/mod11c1v061
-
Wan Z, Hook S, Hulley G. MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05 Deg CMG. V061. Sioux Falls: National Aeronautics and Space Administration. [Accessed: 11 Apr 2022]. Available from: https://lpdaac.usgs.gov/products/mod11c3v061
-
Didan K. MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG. V006. Sioux Falls: National Aeronautics and Space Administration, [Accessed: 11 Apr 2022]. Available from: https://lpdaac.usgs.gov/products/mod13c2v006
-
Metz M, Haas J, Neteler M, William W, Jones P. Monthly time series of spatially enhanced relative humidity for Europe at 30 arc seconds resolution (2000 - 2021) derived from ERA5-Land data. Zenodo; 2022. Available from: https://zenodo.org/record/6146384
-
O’Donnell MS, Ignizio DA. Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geological Survey Data Series. 2012;691:10 p. Available from: https://pubs.usgs.gov/ds/691
-
Randolph SE, Green RM, Peacey MF, Rogers DJ. Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology. 2000;121(Pt 1):15-23. https://doi.org/10.1017/S0031182099006083 PMID: 11085221
-
Tuanmu MN, Jetz W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob Ecol Biogeogr. 2014;23(9):1031-45. https://doi.org/10.1111/geb.12182
-
Danielson JJ, Gesch DB. Global multi-resolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011-1073. 2011;26 p. Available from: https://pubs.usgs.gov/of/2011/1073
-
Fabri ND, Sprong H, Hofmeester TR, Heesterbeek H, Donnars BF, Widemo F, et al. Wild ungulate species differ in their contribution to the transmission of Ixodes ricinus-borne pathogens. Parasit Vectors. 2021;14(1):360. https://doi.org/10.1186/s13071-021-04860-w PMID: 34246293
-
Alexander N, Morley D, Jolyon M, Searle K, Wint W. A first attempt at modelling roe deer (Capreolus capreolus) distributions over Europe. figshare; 2014. Available from: https://figshare.com/articles/dataset/A_first_attempt_at_modelling_roe_deer_Capreolus_capreolus_distributions_over_Europe/1008335/1
-
Wint W, Morley D, Medlock J, Alexander N. A first attempt at modelling red deer (Cervus elaphus) distributions over Europe. figshare; 2014. Available from: https://figshare.com/articles/dataset/A_first_attempt_at_modelling_red_deer_Cervus_elaphus_distributions_over_Europe/1008334/1
-
Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1(1):3-14. https://doi.org/10.1111/j.2041-210X.2009.00001.x
-
Zuur AF, Ieno EN, Smith GM. Analysing ecological data. In: Statistics for Biology and Health Series. Gail M, Krickeberg K, Sarnet J, Tsiatis A, Wong W, editors. New York: Springer; 2007.
-
Burnham KP, Anderson DR, Burnham KP. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002. 488 p.
-
Zuur AF, Ieno EN. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol Evol. 2016;7(6):636-45. https://doi.org/10.1111/2041-210X.12577
-
Luke SG. Evaluating significance in linear mixed-effects models in R. Behav Res Methods. 2017;49(4):1494-502. https://doi.org/10.3758/s13428-016-0809-y PMID: 27620283
-
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022. Available from: https://www.R-project.org/
-
Wickham H, Romain F, Lionel H, Müller K. dplyr: A Grammar of data manipulation. R package version 1.0.8. Vienna: R Foundation for Statistical Computing; 2022. Available from: https://CRAN.R-project.org/package=dplyr
-
Baston D. exactextractr: Fast extraction from raster datasets using polygons. R package version 0.7.2. Vienna: R Foundation for Statistical Computing; 2021. Available from: https://CRAN.R-project.org/package=exactextractr
-
Hijmans RJ. raster: Geographic data analysis and modeling. R package version 3.5-15. Vienna: R Foundation for Statistical Computing; 2022. Available from: https://CRAN.R-project.org/package=raster
-
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1). https://doi.org/10.18637/jss.v067.i01
-
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: tests in linear mixed effects models. J Stat Softw. 2017;82(13). https://doi.org/10.18637/jss.v082.i13
-
Barton K. MuMIn: multi-model inference. R package version 1.43.17. Vienna: R Foundation for Statistical Computing; 2020. Available from: https://CRAN.R-project.org/package=MuMIn
-
Andreassen A, Jore S, Cuber P, Dudman S, Tengs T, Isaksen K, et al. Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasit Vectors. 2012;5(1):177. https://doi.org/10.1186/1756-3305-5-177 PMID: 22913287
-
Hönig V, Svec P, Halas P, Vavruskova Z, Tykalova H, Kilian P, et al. Ticks and tick-borne pathogens in South Bohemia (Czech Republic)--Spatial variability in Ixodes ricinus abundance, Borrelia burgdorferi and tick-borne encephalitis virus prevalence. Ticks Tick Borne Dis. 2015;6(5):559-67. https://doi.org/10.1016/j.ttbdis.2015.04.010 PMID: 25976235
-
Burri C, Bastic V, Maeder G, Patalas E, Gern L. Microclimate and the zoonotic cycle of tick-borne encephalitis virus in Switzerland. J Med Entomol. 2011;48(3):615-27. https://doi.org/10.1603/ME10180 PMID: 21661323
-
Bolzoni L, Rosà R, Cagnacci F, Rizzoli A. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Int J Parasitol. 2012;42(4):373-81. https://doi.org/10.1016/j.ijpara.2012.02.006 PMID: 22429768
-
Bournez L, Umhang G, Moinet M, Richomme C, Demerson JM, Caillot C, et al. Tick-borne encephalitis virus: seasonal and annual variation of epidemiological parameters related to nymph-to-larva transmission and exposure of small mammals. Pathogens. 2020;9(7):518. https://doi.org/10.3390/pathogens9070518 PMID: 32605114
-
Daniel M, Materna J, Hönig V, Metelka L, Danielová V, Harčarik J, et al. Vertical distribution of the tick Ixodes ricinus and tick-borne pathogens in the northern Moravian mountains correlated with climate warming (Jeseníky Mts., Czech Republic). Cent Eur J Public Health. 2009;17(3):139-45. https://doi.org/10.21101/cejph.a3550 PMID: 20020603
-
Rosà R, Tagliapietra V, Manica M, Arnoldi D, Hauffe HC, Rossi C, et al. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Int J Parasitol. 2019;49(10):779-87. https://doi.org/10.1016/j.ijpara.2019.05.006 PMID: 31348960
-
Knap N, Avšič-Županc T. Factors affecting the ecology of tick-borne encephalitis in Slovenia. Epidemiol Infect. 2015;143(10):2059-67. https://doi.org/10.1017/S0950268815000485 PMID: 25918865
-
Kiffner C, Vor T, Hagedorn P, Niedrig M, Rühe F. Determinants of tick-borne encephalitis virus antibody presence in roe deer (Capreolus capreolus) sera. Med Vet Entomol. 2012;26(1):18-25. https://doi.org/10.1111/j.1365-2915.2011.00961.x PMID: 21592155
-
Knap N, Avšič-Županc T. Correlation of TBE incidence with red deer and roe deer abundance in Slovenia. PLoS One. 2013;8(6):e66380. https://doi.org/10.1371/journal.pone.0066380 PMID: 23776668
-
Tkadlec E, Václavík T, Široký P. Rodent host abundance and climate variability as predictors of tickborne disease risk 1 year in advance. Emerg Infect Dis. 2019;25(9):1738-41. https://doi.org/10.3201/eid2509.190684 PMID: 31441762
-
Brugger K, Boehnke D, Petney T, Dobler G, Pfeffer M, Silaghi C, et al. A density map of the tick-borne encephalitis and lyme borreliosis vector Ixodes ricinus (Acari: Ixodidae) for Germany. J Med Entomol. 2016;53(6):1292-302. https://doi.org/10.1093/jme/tjw116 PMID: 27498885
-
Domşa C, Mihalca A, Sándor A. Modeling the distribution of Ixodes ricinus in Romania. North-West J Zool. 2018;14(1):25-9.
-
Kjær LJ, Soleng A, Edgar KS, Lindstedt HEH, Paulsen KM, Andreassen ÅK, et al. Predicting and mapping human risk of exposure to Ixodes ricinus nymphs using climatic and environmental data, Denmark, Norway and Sweden, 2016. Euro Surveill. 2019;24(9):1800101. https://doi.org/10.2807/1560-7917.ES.2019.24.9.1800101 PMID: 30862329
-
Porretta D, Mastrantonio V, Amendolia S, Gaiarsa S, Epis S, Genchi C, et al. Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasit Vectors. 2013;6(1):271. https://doi.org/10.1186/1756-3305-6-271 PMID: 24330500
-
Zeimes CB, Olsson GE, Hjertqvist M, Vanwambeke SO. Shaping zoonosis risk: landscape ecology vs. landscape attractiveness for people, the case of tick-borne encephalitis in Sweden. Parasit Vectors. 2014;7(1):370. https://doi.org/10.1186/1756-3305-7-370 PMID: 25128197
-
Jaenson TGT, Petersson EH, Jaenson DGE, Kindberg J, Pettersson JHO, Hjertqvist M, et al. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasit Vectors. 2018;11(1):477. https://doi.org/10.1186/s13071-018-3057-4 PMID: 30153856
-
Palo RT. Tick-borne encephalitis transmission risk: its dependence on host population dynamics and climate effects. Vector Borne Zoonotic Dis. 2014;14(5):346-52. https://doi.org/10.1089/vbz.2013.1386 PMID: 24745813
-
Cattadori IM, Haydon DT, Thirgood SJ, Hudson PJ. Are indirect measures of abundance a useful index of population density? The case of red grouse harvesting. Oikos. 2003;100(3):439-46. https://doi.org/10.1034/j.1600-0706.2003.12072.x
-
Achazi K, Růžek D, Donoso-Mantke O, Schlegel M, Ali HS, Wenk M, et al. Rodents as sentinels for the prevalence of tick-borne encephalitis virus. Vector Borne Zoonotic Dis. 2011;11(6):641-7. https://doi.org/10.1089/vbz.2010.0236 PMID: 21548766
-
Dizij A, Kurtenbach K. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol. 1995;17(4):177-83. https://doi.org/10.1111/j.1365-3024.1995.tb00887.x PMID: 7624158
-
Carpi G, Cagnacci F, Neteler M, Rizzoli A. Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area. Epidemiol Infect. 2008;136(10):1416-24. https://doi.org/10.1017/S0950268807000039 PMID: 18081949
-
Hudson PJ, Rizzoli A, Rosà R, Chemini C, Jones LD, Gould EA. Tick-borne encephalitis virus in northern Italy: molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Med Vet Entomol. 2001;15(3):304-13. https://doi.org/10.1046/j.0269-283x.2001.00317.x PMID: 11583449
-
Kiffner C, Zucchini W, Schomaker P, Vor T, Hagedorn P, Niedrig M, et al. Determinants of tick-borne encephalitis in counties of southern Germany, 2001-2008. Int J Health Geogr. 2010;9(1):42. https://doi.org/10.1186/1476-072X-9-42 PMID: 20707897
-
Kolář J, Potůčková M, Štefanová E. Tick-born encephalitis risk assessment based on satellite data. AUC GEOGRAPHICA.2016;51(2):155-67. https://doi.org/10.14712/23361980.2016.13
-
Kriz B, Daniel M, Benes C, Maly M. The role of game (wild boar and roe deer) in the spread of tick-borne encephalitis in the Czech Republic. Vector Borne Zoonotic Dis. 2014;14(11):801-7. https://doi.org/10.1089/vbz.2013.1569 PMID: 25409271
-
Rácz GR, Bán E, Ferenczi E, Berencsi G. A simple spatial model to explain the distribution of human tick-borne encephalitis cases in hungary. Vector Borne Zoonotic Dis. 2006;6(4):369-78. https://doi.org/10.1089/vbz.2006.6.369 PMID: 17187571
-
Uusitalo R, Siljander M, Dub T, Sane J, Sormunen JJ, Pellikka P, et al. Modelling habitat suitability for occurrence of human tick-borne encephalitis (TBE) cases in Finland. Ticks Tick Borne Dis. 2020;11(5):101457. https://doi.org/10.1016/j.ttbdis.2020.101457 PMID: 32723626
-
Vanwambeke SO, Sumilo D, Bormane A, Lambin EF, Randolph SE. Landscape predictors of tick-borne encephalitis in Latvia: land cover, land use, and land ownership. Vector Borne Zoonotic Dis. 2010;10(5):497-506. https://doi.org/10.1089/vbz.2009.0116 PMID: 19877818
-
Stefanoff P, Rosinska M, Samuels S, White DJ, Morse DL, Randolph SE. A national case-control study identifies human socio-economic status and activities as risk factors for tick-borne encephalitis in Poland. PLoS One. 2012;7(9):e45511. https://doi.org/10.1371/journal.pone.0045511 PMID: 23029063
-
Daniel M, Kříž B, Danielová V, Beneš Č. Sudden increase in tick-borne encephalitis cases in the Czech Republic, 2006. Int J Med Microbiol. 2008;298:81-7. https://doi.org/10.1016/j.ijmm.2008.02.006
-
Borde JP, Kaier K, Hehn P, Matzarakis A, Frey S, Bestehorn M, et al. The complex interplay of climate, TBEV vector dynamics and TBEV infection rates in ticks-Monitoring a natural TBEV focus in Germany, 2009-2018. PLoS One. 2021;16(1):e0244668. https://doi.org/10.1371/journal.pone.0244668 PMID: 33411799
-
Vollack K, Sodoudi S, Névir P, Müller K, Richter D. Influence of meteorological parameters during the preceding fall and winter on the questing activity of nymphal Ixodes ricinus ticks. Int J Biometeorol. 2017;61(10):1787-95. https://doi.org/10.1007/s00484-017-1362-9 PMID: 28462449
-
Randolph SE, Storey K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol. 1999;36(6):741-8. https://doi.org/10.1093/jmedent/36.6.741 PMID: 10593075
-
Daniel M, Kříz˘ B, Valter J, Kott I, Danielová V. The influence of meteorological conditions of the preceding winter on the incidences of tick-borne encephalitis and Lyme borreliosis in the Czech Republic. Int J Med Microbiol. 2008;298:60-7. https://doi.org/10.1016/j.ijmm.2008.05.001
-
Kiffner C, Vor T, Hagedorn P, Niedrig M, Rühe F. Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany. Parasitol Res. 2011;108(2):323-35. https://doi.org/10.1007/s00436-010-2065-x PMID: 20878183
-
Walter M, Vogelgesang JR, Rubel F, Brugger K. Tick-borne encephalitis virus and its European distribution in ticks and endothermic mammals. Microorganisms. 2020;8(7):1065. https://doi.org/10.3390/microorganisms8071065 PMID: 32708877
-
Zeman P, Bene C. A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: possible impact of global warming? Int J Med Microbiol. 2004;293(Suppl 37):48-54. PMID: 15146984
-
Knap N, Durmiši E, Saksida A, Korva M, Petrovec M, Avšič-Županc T. Influence of climatic factors on dynamics of questing Ixodes ricinus ticks in Slovenia. Vet Parasitol. 2009;164(2-4):275-81. https://doi.org/10.1016/j.vetpar.2009.06.001 PMID: 19560275
-
Hönig V, Švec P, Marek L, Mrkvička T, Dana Z, Wittmann MV, et al. Model of risk of exposure to Lyme borreliosis and tick-borne encephalitis virus-infected ticks in the border area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate). Int J Environ Res Public Health. 2019;16(7):1173. https://doi.org/10.3390/ijerph16071173 PMID: 30986900
-
Stefanoff P, Rubikowska B, Bratkowski J, Ustrnul Z, Vanwambeke SO, Rosinska M. A predictive model has identified tick-borne encephalitis high-risk areas in regions where no cases were reported previously, Poland, 1999-2012. Int J Environ Res Public Health. 2018;15(4):677. https://doi.org/10.3390/ijerph15040677 PMID: 29617333
-
Rosà R, Andreo V, Tagliapietra V, Baráková I, Arnoldi D, Hauffe HC, et al. Effect of climate and land use on the spatio-temporal variability of tick-borne bacteria in Europe. Int J Environ Res Public Health. 2018;15(4):732. https://doi.org/10.3390/ijerph15040732 PMID: 29649132
-
Rosà R, Pugliese A, Ghosh M, Perkins SE, Rizzoli A. Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Vector Borne Zoonotic Dis. 2007;7(3):285-95. https://doi.org/10.1089/vbz.2006.0607 PMID: 17760511
Data & Media loading...
Supplementary data
-
-
Supplement
-