1887
Research Open Access
Like 0

Abstract

Background

Rodent-borne viruses such as orthohantaviruses and arenaviruses cause considerable disease burden with regional and temporal differences in incidence and clinical awareness. Therefore, it is important to regularly evaluate laboratory diagnostic capabilities, e.g. by external quality assessments (EQA).

Aim

We wished to evaluate the performance and diagnostic capability of European expert laboratories to detect orthohantaviruses and lymphocytic choriomeningitis virus (LCMV) and human antibody response towards orthohantaviruses.

Methods

We conducted an EQA in 2021; molecular panels consisted of 12 samples, including different orthohantaviruses (Seoul, Dobrava-Belgrade (DOBV), Puumala (PUUV) and Hantaan orthohantavirus), LCMV and negative controls. Serological panels consisted of six human serum samples reactive to PUUV, DOBV or negative to orthohantaviruses. The EQA was sent to 25 laboratories in 20 countries.

Results

The accuracy of molecular detection of orthohantaviruses varied (50‒67%, average 62%) among 16 participating laboratories, while LCMV samples were successfully detected in all 11 participating laboratories (91-100%, average 96%). The accuracy of serological diagnosis of acute and past orthohantavirus infections was on average 95% among 20 participating laboratories and 82% in 19 laboratories, respectively. A variety of methods was used, with predominance of in-house assays for molecular tests, and commercial assays for serological ones.

Conclusion

Serology, the most common tool to diagnose acute orthohantavirus infections, had a high accuracy in this EQA. The molecular detection of orthohantaviruses needs improvement while LCMV detection (performed in fewer laboratories) had 95% accuracy. Further EQAs are recommended to be performed periodically to monitor improvements and challenges in the diagnostics of rodent–borne diseases.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.40.2300054
2023-10-05
2024-12-16
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.40.2300054
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/40/eurosurv-28-40-4.html?itemId=/content/10.2807/1560-7917.ES.2023.28.40.2300054&mimeType=html&fmt=ahah

References

  1. Williams EP, Spruill-Harrell BM, Taylor MK, Lee J, Nywening AV, Yang Z, et al. Common themes in zoonotic spillover and disease emergence: lessons learned from bat- and rodent-borne RNA viruses. Viruses. 2021;13(8):1509.  https://doi.org/10.3390/v13081509  PMID: 34452374 
  2. Escadafal C, Avšič-Županc T, Vapalahti O, Niklasson B, Teichmann A, Niedrig M, et al. Second external quality assurance study for the serological diagnosis of hantaviruses in Europe. PLoS Negl Trop Dis. 2012;6(4):e1607.  https://doi.org/10.1371/journal.pntd.0001607  PMID: 22509420 
  3. Biel SS, Donoso Mantke O, Lemmer K, Vaheri A, Lundkvist A, Emmerich P, et al. Quality control measures for the serological diagnosis of hantavirus infections. J Clin Virol. 2003;28(3):248-56.  https://doi.org/10.1016/S1386-6532(03)00009-X  PMID: 14522063 
  4. Vaheri A, Strandin T, Hepojoki J, Sironen T, Henttonen H, Mäkelä S, et al. Uncovering the mysteries of hantavirus infections. Nat Rev Microbiol. 2013;11(8):539-50.  https://doi.org/10.1038/nrmicro3066  PMID: 24020072 
  5. Forbes KM, Sironen T, Plyusnin A. Hantavirus maintenance and transmission in reservoir host populations. Curr Opin Virol. 2018;28:1-6.  https://doi.org/10.1016/j.coviro.2017.09.003  PMID: 29024905 
  6. Kruger DH, Figueiredo LTM, Song JW, Klempa B. Hantaviruses--globally emerging pathogens. J Clin Virol. 2015;64:128-36.  https://doi.org/10.1016/j.jcv.2014.08.033  PMID: 25453325 
  7. European Centre for Disease Prevention and Control (ECDC). Hantavirus Infection. Annual Epidemiological Report for 2020.Stockholm: ECDC, 2023.Available from: https://www.ecdc.europa.eu/en/publications-data/hantavirus-infection-annual-epidemiological-report-2020
  8. Vilibic-Cavlek T, Savic V, Ferenc T, Mrzljak A, Barbic L, Bogdanic M, et al. Lymphocytic choriomeningitis-emerging trends of a neglected virus: a narrative review. Trop Med Infect Dis. 2021;6(2):88.  https://doi.org/10.3390/tropicalmed6020088  PMID: 34070581 
  9. Delaine M, Weingertner AS, Nougairede A, Lepiller Q, Fafi-Kremer S, Favre R, et al. Microcephaly caused by lymphocytic choriomeningitis virus. Emerg Infect Dis. 2017;23(9):1548-50.  https://doi.org/10.3201/eid2309.170775  PMID: 28820372 
  10. Mathur G, Yadav K, Ford B, Schafer IJ, Basavaraju SV, Knust B, et al. High clinical suspicion of donor-derived disease leads to timely recognition and early intervention to treat solid organ transplant-transmitted lymphocytic choriomeningitis virus. Transpl Infect Dis. 2017;19(4):e12707.  https://doi.org/10.1111/tid.12707  PMID: 28423464 
  11. Folk S, Steinbecker S, Windmeyer J, Macneil A, Campbell S, Rollin PE. Lymphocytic choriomeningitis with severe manifestations, Missouri, USA. Emerg Infect Dis. 2011;17(10):1973-4.  https://doi.org/10.3201/eid1710.110911  PMID: 22000392 
  12. Aitichou M, Saleh SS, McElroy AK, Schmaljohn C, Ibrahim MS. Identification of Dobrava, Hantaan, Seoul, and Puumala viruses by one-step real-time RT-PCR. J Virol Methods. 2005;124(1-2):21-6.  https://doi.org/10.1016/j.jviromet.2004.10.004  PMID: 15664046 
  13. Kramski M, Meisel H, Klempa B, Krüger DH, Pauli G, Nitsche A. Detection and typing of human pathogenic hantaviruses by real-time reverse transcription-PCR and pyrosequencing. Clin Chem. 2007;53(11):1899-905.  https://doi.org/10.1373/clinchem.2007.093245  PMID: 17717126 
  14. Avsic-Zupanc T, Petrovec M, Furlan P, Kaps R, Elgh F, Lundkvist A. Hemorrhagic fever with renal syndrome in the Dolenjska region of Slovenia--a 10-year survey. Clin Infect Dis. 1999;28(4):860-5.  https://doi.org/10.1086/515185  PMID: 10825051 
  15. Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, et al. Hantavirus in African wood mouse, Guinea. Emerg Infect Dis. 2006;12(5):838-40.  https://doi.org/10.3201/eid1205.051487  PMID: 16704849 
  16. Weidmann M, Schmidt P, Vackova M, Krivanec K, Munclinger P, Hufert FT. Identification of genetic evidence for dobrava virus spillover in rodents by nested reverse transcription (RT)-PCR and TaqMan RT-PCR. J Clin Microbiol. 2005;43(2):808-12.  https://doi.org/10.1128/JCM.43.2.808-812.2005  PMID: 15695684 
  17. Bowen MD, Gelbmann W, Ksiazek TG, Nichol ST, Nowotny N. Puumala virus and two genetic variants of Tula virus are present in Austrian rodents. J Med Virol. 1997;53(2):174-81.  https://doi.org/10.1002/(SICI)1096-9071(199710)53:2<174::AID-JMV11>3.0.CO;2-J  PMID: 9334930 
  18. Pang Z, Li A, Li J, Qu J, He C, Zhang S, et al. Comprehensive multiplex one-step real-time TaqMan qRT-PCR assays for detection and quantification of hemorrhagic fever viruses. PLoS One. 2014;9(4):e95635.  https://doi.org/10.1371/journal.pone.0095635  PMID: 24752452 
  19. Papa A, Johnson AM, Stockton PC, Bowen MD, Spiropoulou CF, Alexiou-Daniel S, et al. Retrospective serological and genetic study of the distribution of hantaviruses in Greece. J Med Virol. 1998;55(4):321-7.  https://doi.org/10.1002/(SICI)1096-9071(199808)55:4<321::AID-JMV11>3.0.CO;2-H  PMID: 9661842 
  20. Niskanen S, Jääskeläinen A, Vapalahti O, Sironen T. Evaluation of real-time RT-PCR for diagnostic use in detection of Puumala virus. Viruses. 2019;11(7):661.  https://doi.org/10.3390/v11070661  PMID: 31330941 
  21. Bowen MD, Peters CJ, Nichol ST. Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol. 1997;8(3):301-16.  https://doi.org/10.1006/mpev.1997.0436  PMID: 9417890 
  22. Cordey S, Sahli R, Moraz ML, Estrade C, Morandi L, Cherpillod P, et al. Analytical validation of a lymphocytic choriomeningitis virus real-time RT-PCR assay. J Virol Methods. 2011;177(1):118-22.  https://doi.org/10.1016/j.jviromet.2011.06.018  PMID: 21763351 
  23. Vieth S, Drosten C, Lenz O, Vincent M, Omilabu S, Hass M, et al. RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Trans R Soc Trop Med Hyg. 2007;101(12):1253-64.  https://doi.org/10.1016/j.trstmh.2005.03.018  PMID: 17905372 
  24. Fornůsková A, Hiadlovská Z, Macholán M, Piálek J, de Bellocq JG. New perspective on the geographic distribution and evolution of lymphocytic choriomeningitis virus, Central Europe. Emerg Infect Dis. 2021;27(10):2638-47.  https://doi.org/10.3201/eid2710.210224  PMID: 34545789 
  25. Coulibaly-N’Golo D, Allali B, Kouassi SK, Fichet-Calvet E, Becker-Ziaja B, Rieger T, et al. Novel arenavirus sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d’Ivoire: implications for evolution of arenaviruses in Africa. PLoS One. 2011;6(6):e20893.  https://doi.org/10.1371/journal.pone.0020893  PMID: 21695269 
  26. Lee HW, Calisher C, Schmaljohn CS. Manual of hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Seoul: WHO Collaborating Center for Virus Reference and Research (Hantaviruses); 1998. p. 250.
/content/10.2807/1560-7917.ES.2023.28.40.2300054
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error