-
West Nile virus in the Iberian Peninsula: using equine cases to identify high-risk areas for humans
- José-María García-Carrasco1 , Antonio-Román Muñoz1 , Jesús Olivero1 , Marina Segura2 , Ignacio García-Bocanegra3 , Raimundo Real1
-
View Affiliations Hide AffiliationsAffiliations: 1 Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain 2 International Vaccination Center of Malaga, Maritime Port of Malaga, Ministry of Health, Consumption and Social Welfare, Government of Spain, Málaga, Spain 3 Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, SpainJosé-María García-Carrascojmgc uma.es
-
View Citation Hide Citation
Citation style for this article: García-Carrasco José-María, Muñoz Antonio-Román, Olivero Jesús, Segura Marina, García-Bocanegra Ignacio, Real Raimundo. West Nile virus in the Iberian Peninsula: using equine cases to identify high-risk areas for humans. Euro Surveill. 2023;28(40):pii=2200844. https://doi.org/10.2807/1560-7917.ES.2023.28.40.2200844 Received: 27 Oct 2022; Accepted: 28 Mar 2023
Abstract
West Nile virus (WNV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans and horses are incidental dead-end hosts. In 2020, the largest outbreak of West Nile virus infection in the Iberian Peninsula occurred, with 141 clusters in horses and 77 human cases.
We analysed which drivers influence spillover from the cycle to humans and equines and identified areas at risk for WNV transmission.
Based on data on WNV cases in horses and humans in 2020 in Portugal and Spain, we developed logistic regression models using environmental and anthropic variables to highlight risk areas. Models were adapted to a high-resolution risk map.
Cases of WNV in horses could be used as indicators of viral activity and thus predict cases in humans. The risk map of horses was able to define high-risk areas for previous cases in humans and equines in Portugal and Spain, as well as predict human and horse cases in the transmission seasons of 2021 and 2022. We found that the spatial patterns of the favourable areas for outbreaks correspond to the main hydrographic basins of the Iberian Peninsula, jointly affecting Portugal and Spain.
A risk map highlighting the risk areas for potential future cases could be cost-effective as a means of promoting preventive measures to decrease incidence of WNV infection in Europe, based on a One Health surveillance approach.
Article metrics loading...
Full text loading...
References
-
Chancey C, Grinev A, Volkova E, Rios M. The global ecology and epidemiology of West Nile virus. BioMed Res Int. 2015;2015:376230. https://doi.org/10.1155/2015/376230 PMID: 25866777
-
Kramer LD, Li J, Shi PY. West Nile virus. Lancet Neurol. 2007;6(2):171-81. https://doi.org/10.1016/S1474-4422(07)70030-3 PMID: 17239804
-
Kaptoul D, Viladrich PF, Domingo C, Niubó J, Martínez-Yélamos S, De Ory F, et al. West Nile virus in Spain: report of the first diagnosed case (in Spain) in a human with aseptic meningitis. Scand J Infect Dis. 2007;39(1):70-1. https://doi.org/10.1080/00365540600740553 PMID: 17366016
-
Connell J, Mckeown P, Garvey P, Cotter S, Conway A, O’Flanagan D, et al. Two linked cases of West Nile virus (WNV) acquired by Irish tourists in the Algarve, Portugal. Euro Surveill. 2004;8(32):pii=2517. https://doi.org/10.2807/esw.08.32.02517-en
-
Ministerio de Sanidad. Informe de Situación y Evaluación del Riesgo de la Fiebre por Virus del Nilo Occidental en España. [Information report and evaluation of the risk of West Nile fever in Spain]. Madrid: Ministerio de Sanidad; 2017. Spanish. Available from: https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/analisisituacion/doc/Evaluacion_de_riesgo-VNO-2017.pdf
-
García-Bocanegra I, Jaén-Téllez JA, Napp S, Arenas-Montes A, Fernández-Morente M, Fernández-Molera V, et al. West Nile fever outbreak in horses and humans, Spain, 2010. Emerg Infect Dis. 2011;17(12):2397-9. https://doi.org/10.3201/eid1712.110651 PMID: 22172565
-
Alves MJ, Poças JMD, Luz T, Zé-Zé L, Amaro F, Osório H. Infecção por vírus West Nile (Flavivírus) em Portugal. Consideraçoes acerca de um caso clínico de síndrome febril. [West Nile virus (Flavivirus). infection in Portugal. Considerations about a clinical case with febrile syndrome and rash]. Rpdi. 2012; 8(1):46-51. Portuguese.
-
García San Miguel Rodríguez-Alarcón L, Fernández-Martínez B, Sierra Moros MJ, Vázquez A, Julián Pachés P, García Villacieros E, et al. Unprecedented increase of West Nile virus neuroinvasive disease, Spain, summer 2020. Euro Surveill. 2021;26(19):2002010. https://doi.org/10.2807/1560-7917.ES.2021.26.19.2002010 PMID: 33988123
-
Lourenço J, Barros SC, Zé-Zé L, Damineli DSC, Giovanetti M, Osório HC, et al. West Nile virus transmission potential in Portugal. Commun Biol. 2022;5(1):6. https://doi.org/10.1038/s42003-021-02969-3 PMID: 35013546
-
Casimiro-Soriguer CS, Perez-Florido J, Fernandez-Rueda JL, Pedrosa-Corral I, Guillot-Sulay V, Lorusso N, et al. Phylogenetic analysis of the 2020 West Nile virus (WNV) outbreak in Andalusia (Spain). Viruses. 2021;13(5):836. https://doi.org/10.3390/v13050836 PMID: 34063166
-
Leblond A, Hendrikx P, Sabatier P. West Nile virus outbreak detection using syndromic monitoring in horses. Vector Borne Zoonotic Dis. 2007;7(3):403-10. https://doi.org/10.1089/vbz.2006.0593 PMID: 17767410
-
Ward MP, Schuermann JA, Highfield LD, Murray KO. Characteristics of an outbreak of West Nile virus encephalomyelitis in a previously uninfected population of horses. Vet Microbiol. 2006;118(3-4):255-9. https://doi.org/10.1016/j.vetmic.2006.07.016 PMID: 16971067
-
García-Bocanegra I, Belkhiria J, Napp S, Cano-Terriza D, Jiménez-Ruiz S, Martínez-López B. Epidemiology and spatio-temporal analysis of West Nile virus in horses in Spain between 2010 and 2016. Transbound Emerg Dis. 2018;65(2):567-77. https://doi.org/10.1111/tbed.12742 PMID: 29034611
-
van Galen G, Calozet L, Leblond A, Tritz P, Dal Pozzo F, Porter SR, et al. Can horses be clinically screened for West Nile Fever? Vet Rec. 2013;172(4):101. https://doi.org/10.1136/vr.101267 PMID: 23292842
-
Saegerman C, Alba-Casals A, García-Bocanegra I, Dal Pozzo F, van Galen G. Clinical sentinel surveillance of equine West Nile fever, Spain. Transbound Emerg Dis. 2016;63(2):184-93. https://doi.org/10.1111/tbed.12243 PMID: 24899369
-
Barker CM, Reisen WK, Kramer VL. California state Mosquito-Borne Virus Surveillance and Response Plan: a retrospective evaluation using conditional simulations. Am J Trop Med Hyg. 2003;68(5):508-18. https://doi.org/10.4269/ajtmh.2003.68.508 PMID: 12812335
-
Reed KD, Meece JK, Henkel JS, Shukla SK. Birds, migration and emerging zoonoses: west nile virus, lyme disease, influenza A and enteropathogens. Clin Med Res. 2003;1(1):5-12. https://doi.org/10.3121/cmr.1.1.5 PMID: 15931279
-
Napp S, Montalvo T, Piñol-Baena C, Gómez-Martín MB, Nicolás-Francisco O, Soler M, et al. Usefulness of Eurasian magpies (Pica pica) for West Nile virus surveillance in non-endemic and endemic situations. Viruses. 2019;11(8):716. https://doi.org/10.3390/v11080716 PMID: 31387316
-
European Commission (EC). Commission implementing decision 2018/945 of 22 June 2018 on the communicable diseases and related special health issues to be covered by epidemiological surveillance as well as relevant case definitions. Brussels: EC; 2018. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018D0945
-
European Centre for Disease Prevention and Control (ECDC). West Nile virus transmission season in Europe, 2020. Stockholm: ECDC; 2021. Available from: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2020
-
Eurostat. NUTS- Nomenclature of Territorial Units for Statistics. Luxemburg: Eurostat; 2021. Available from: https://ec.europa.eu/eurostat/web/nuts/background
-
Ministerio de Sanidad. Meningoencefalitis por el virus del Nilo Occidental en España. Evaluación rápida de Riesgo. [West Nile virus meningoencephalitis. Rapid risk assessment]. Madrid: Ministerio de Sanidad; 2020. Spanish. Available from: https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/docs/20200925_ERR_Nilo_Occidental.pdf
-
Ministerio de Sanidad. Meningoencefalitis por virus del Nilo occidental en España (2a actualización). Evaluación rápida de riesgo. [West Nile virus meningoencephalitis in Spain (2nd update). Rapid risk assessment]. Madrid: Ministerio de Sanidad; 2020. Spanish. Available from: https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/docs/20201203_ERR_Nilo_Occidental.pdf
-
European Commission (EC). Animal Disease Information System. Brussels: EC. [Accessed: 28 Aug 2023]. Available from: https://food.ec.europa.eu/animals/animal-diseases/animal-disease-information-system-adis_en
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57(1):289-300.
-
Rao CR. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Math Proc Camb Philos Soc. 1948;44(1):50-7. https://doi.org/10.1017/S0305004100023987
-
Real R, Barbosa AM, Vargas JM. Obtaining environmental favourability functions from logistic regression. Environ Ecol Stat. 2006;13(2):237-45. https://doi.org/10.1007/s10651-005-0003-3
-
Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv. 1997;24(1):38-49. https://doi.org/10.1017/S0376892997000088
-
Márcia Barbosa A, Real R, Muñoz A-R, Brown JA. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers Distrib. 2013;19(10):1333-8. https://doi.org/10.1111/ddi.12100
-
Lobo JM, Jiménez-Valverde A, Real R. AUC: A misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr. 2008;17(2):145-51. https://doi.org/10.1111/j.1466-8238.2007.00358.x
-
Bombi P, D’Amen M. Scaling down distribution maps from atlas data: A test of different approaches with virtual species. J Biogeogr. 2012;39(4):640-51. https://doi.org/10.1111/j.1365-2699.2011.02627.x
-
Bakonyi T, Haussig JM. West Nile virus keeps on moving up in Europe. Euro Surveill. 2020;25(46):2001938. https://doi.org/10.2807/1560-7917.ES.2020.25.46.2001938 PMID: 33213684
-
García-Carrasco J-M, Muñoz A-R, Olivero J, Segura M, Real R. Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS Negl Trop Dis. 2021;15(1):e0009022. https://doi.org/10.1371/journal.pntd.0009022 PMID: 33411739
-
Camp JV, Nowotny N. The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak? Expert Rev Anti Infect Ther. 2020;18(2):145-54. https://doi.org/10.1080/14787210.2020.1713751 PMID: 31914833
-
Bravo-Barriga D, Aguilera-Sepúlveda P, Guerrero-Carvajal F, Llorente F, Reina D, Pérez-Martín JE, et al. West Nile and Usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, western Spain, 2017-2019. Vet Microbiol. 2021;255(March):109020. https://doi.org/10.1016/j.vetmic.2021.109020 PMID: 33677369
-
García-Bocanegra I, Franco JJ, León CI, Barbero-Moyano J, García-Miña MV, Fernández-Molera V, et al. High exposure of West Nile virus in equid and wild bird populations in Spain following the epidemic outbreak in 2020. Transbound Emerg Dis. 2022;69(6):3624-36. https://doi.org/10.1111/tbed.14733 PMID: 36222172
-
Ulbert S. West Nile virus vaccines - current situation and future directions. Hum Vaccin Immunother. 2019;15(10):2337-42. https://doi.org/10.1080/21645515.2019.1621149 PMID: 31116691
-
Marini G, Poletti P, Giacobini M, Pugliese A, Merler S, Rosà R. The role of climatic and density dependent factors in shaping mosquito population dynamics: The case of Culex pipiens in northwestern Italy. PLoS One. 2016;11(4):e0154018. https://doi.org/10.1371/journal.pone.0154018 PMID: 27105065
-
Vogels CBF, Hartemink N, Koenraadt CJM. Modelling West Nile virus transmission risk in Europe: effect of temperature and mosquito biotypes on the basic reproduction number. Sci Rep. 2017;7(1):5022. https://doi.org/10.1038/s41598-017-05185-4 PMID: 28694450
-
Brugueras S, Fernández-Martínez B, Martínez-de la Puente J, Figuerola J, Porro TM, Rius C, et al. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. Environ Res. 2020;191:110038. https://doi.org/10.1016/j.envres.2020.110038 PMID: 32810503
-
Reisen WK, Fang Y, Martinez VM. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol. 2006;43(2):309-17. https://doi.org/10.1093/jmedent/43.2.309 PMID: 16619616
-
Hartley DM, Barker CM, Le Menach A, Niu T, Gaff HD, Reisen WK. Effects of temperature on emergence and seasonality of West Nile virus in California. Am J Trop Med Hyg. 2012;86(5):884-94. https://doi.org/10.4269/ajtmh.2012.11-0342 PMID: 22556092
-
Paz S, Malkinson D, Green MS, Tsioni G, Papa A, Danis K, et al. Permissive summer temperatures of the 2010 European West Nile fever upsurge. PLoS One. 2013;8(2):e56398. https://doi.org/10.1371/journal.pone.0056398 PMID: 23431374
-
Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface. 2012;9(75):2708-17. https://doi.org/10.1098/rsif.2012.0138 PMID: 22535696
-
Miramontes R Jr, Lafferty WE, Lind BK, Oberle MW. Is agricultural activity linked to the incidence of human West Nile virus? Am J Prev Med. 2006;30(2):160-3. https://doi.org/10.1016/j.amepre.2005.10.008 PMID: 16459215
-
Crowder DW, Dykstra EA, Brauner JM, Duffy A, Reed C, Martin E, et al. West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities. PLoS One. 2013;8(1):e55006. https://doi.org/10.1371/journal.pone.0055006 PMID: 23383032
-
Hardy JL, Houk EJ, Kramer LD, Reeves WC. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol. 1983;28(1):229-62. https://doi.org/10.1146/annurev.en.28.010183.001305 PMID: 6131642
-
Liang G, Gao X, Gould EA. Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg Microbes Infect. 2015;4(3):e18. https://doi.org/10.1038/emi.2015.18 PMID: 26038768
-
World Health Organization (WHO). West Nile virus. Geneva: WHO; 2017. Available from: https://www.who.int/news-room/fact-sheets/detail/west-nile-virus
-
Young JJ, Coulombier D, Domanović D, Zeller H, Gossner CM, European Union West Nile fever working group. One Health approach for West Nile virus surveillance in the European Union: relevance of equine data for blood safety. Euro Surveill. 2019;24(16):1800349. https://doi.org/10.2807/1560-7917.ES.2019.24.16.1800349 PMID: 31014416
-
Ajuntament de Reus. Detectat un cas positiu de febre del Nil Occidental a Reus. [A positive case of West Nile fever has been detected in Reus]. Reus: Ajuntament de Reus; 2022. Spanish. Available from: https://www.reus.cat/noticia/detectat-un-cas-positiu-de-febre-del-nil-occidental-reus
-
Ziegler U, Lühken R, Keller M, Cadar D, van der Grinten E, Michel F, et al. West Nile virus epizootic in Germany, 2018. Antiviral Res. 2019;162(162):39-43. https://doi.org/10.1016/j.antiviral.2018.12.005 PMID: 30550796
-
Ministerio de Agricultura Pesca y Alimentación. Programa de vigilancia fiebre del Nilo Occidental 2022. [West Nile Fever Surveillance Program 2022]. Madrid: Ministerio de Agricultura Pesca y Alimentación; 2021. Spanish. Available from: https://www.mapa.gob.es/es/ganaderia/temas/sanidad-animal-higiene-ganadera/sanidad-animal/enfermedades/fiebre-nilo-occidental/F_O_Nilo.aspx
-
Healy JM, Reisen WK, Kramer VL, Fischer M, Lindsey NP, Nasci RS, et al. Comparison of the efficiency and cost of West Nile virus surveillance methods in California. Vector Borne Zoonotic Dis. 2015;15(2):147-55. https://doi.org/10.1089/vbz.2014.1689 PMID: 25700046
-
Chevalier V, Lecollinet S, Durand B. West Nile virus in Europe: a comparison of surveillance system designs in a changing epidemiological context. Vector Borne Zoonotic Dis. 2011;11(8):1085-91. https://doi.org/10.1089/vbz.2010.0234 PMID: 21548765
-
García-Carrasco J-M, Muñoz A-R, Real R. Anticipating the locations in Europe of high-risk areas for West Nile virus outbreaks in 2021. Zoonoses Public Health. 2021;68(8):982-6. https://doi.org/10.1111/zph.12877 PMID: 34242480
-
Riccò M, Peruzzi S, Balzarini F. Epidemiology of West Nile virus infections in humans, Italy, 2012-2020: a summary of available evidences. Trop Med Infect Dis. 2021;6(2):61. https://doi.org/10.3390/tropicalmed6020061 PMID: 33923347
-
Papa A, Danis K, Baka A, Bakas A, Dougas G, Lytras T, et al. Ongoing outbreak of West Nile virus infections in humans in Greece, July-August 2010. Euro Surveill. 2010;15(34):1-9644. https://doi.org/10.2807/ese.15.34.19644-en PMID: 20807489
-
Papa A, Tsioka K, Gewehr S, Kalaitzopouou S, Pervanidou D, Vakali A, et al. West Nile fever upsurge in a Greek regional unit, 2020. Acta Trop. 2021;221:106010. https://doi.org/10.1016/j.actatropica.2021.106010 PMID: 34129841
Data & Media loading...
Supplementary data
-
-
Supplementary Material
-