1887
Research Open Access
Like 1

Abstract

Background

is a commensal bacterium which can cause invasive disease. Colonisation studies are important to guide vaccination strategies.

Aim

The study’s aim was to determine the prevalence of meningococcal colonisation, duration of carriage and distribution of genogroups in Iceland.

Methods

We collected samples from 1 to 6-year-old children, 15–16-year-old adolescents and 18–20-year-old young adults. Carriers were sampled at regular intervals until the first negative swab. Conventional culture methods and qPCR were applied to detect meningococci and determine the genogroup. Whole genome sequencing was done on groupable meningococci.

Results

No meningococci were detected among 460 children, while one of 197 (0.5%) adolescents and 34 of 525 young adults (6.5 %) carried meningococci. Non-groupable meningococci were most common (62/77 isolates from 26/35 carriers), followed by genogroup B (MenB) (12/77 isolates from 6/35 carriers). Genogroup Y was detected in two individuals and genogroup W in one. None carried genogroup C (MenC). The longest duration of carriage was at least 21 months. Serial samples from persistent carriers were closely related in WGS.

Conclusions

Carriage of pathogenic meningococci is rare in young Icelanders. Non-groupable meningococci were the most common colonising meningococci in Iceland, followed by MenB. No MenC were found. Whole genome sequencing suggests prolonged carriage of the same strains in persistent carriers.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.39.2300215
2023-09-28
2024-11-22
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.39.2300215
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/39/eurosurv-28-39-5.html?itemId=/content/10.2807/1560-7917.ES.2023.28.39.2300215&mimeType=html&fmt=ahah

References

  1. Wang B, Santoreneos R, Giles L, Haji Ali Afzali H, Marshall H. Case fatality rates of invasive meningococcal disease by serogroup and age: A systematic review and meta-analysis. Vaccine. 2019;37(21):2768-82.  https://doi.org/10.1016/j.vaccine.2019.04.020  PMID: 30987851 
  2. van Ravenhorst MB, Bijlsma MW, van Houten MA, Struben VMD, Anderson AS, Eiden J, et al. Meningococcal carriage in Dutch adolescents and young adults; across-sectional and longitudinal cohort study. Clin Microbiol Infect. 2017;23(8):573.e1-7.  https://doi.org/10.1016/j.cmi.2017.02.008  PMID: 28192234 
  3. Voss SS, Nielsen J, Valentiner-Branth P. Risk of sequelae after invasive meningococcal disease. BMC Infect Dis. 2022;22(1):148.  https://doi.org/10.1186/s12879-022-07129-4  PMID: 35148717 
  4. Harrison LH, Trotter CL, Ramsay ME. Global epidemiology of meningococcal disease. Vaccine. 2009;27(Suppl 2):B51-63.  https://doi.org/10.1016/j.vaccine.2009.04.063  PMID: 19477562 
  5. Peterson ME, Li Y, Shanks H, Mile R, Nair H, Kyaw MH, Meningococcal Carriage Group. Serogroup-specific meningococcal carriage by age group: a systematic review and meta-analysis. BMJ Open. 2019;9(4):e024343.  https://doi.org/10.1136/bmjopen-2018-024343  PMID: 31005910 
  6. Knol MJ, Hahné SJM, Lucidarme J, Campbell H, de Melker HE, Gray SJ, et al. Temporal associations between national outbreaks of meningococcal serogroup W and C disease in the Netherlands and England: an observational cohort study. Lancet Public Health. 2017;2(10):e473-82.  https://doi.org/10.1016/S2468-2667(17)30157-3  PMID: 29253430 
  7. Nuttens C, Findlow J, Balmer P, Swerdlow DL, Tin Tin Htar M. Evolution of invasive meningococcal disease epidemiology in Europe, 2008 to 2017. Euro Surveill. 2022;27(3):2002075.  https://doi.org/10.2807/1560-7917.ES.2022.27.3.2002075  PMID: 35057902 
  8. Diene SM, Bertelli C, Pillonel T, Jacquier N, Croxatto A, Jaton K, et al. Comparative genomics of Neisseria meningitidis strains: new targets for molecular diagnostics. Clin Microbiol Infect. 2016;22(6):568.e1-7.  https://doi.org/10.1016/j.cmi.2016.03.022  PMID: 27085725 
  9. Rojas E, Hoyos J, Oldfield NJ, Lee P, Flint M, Jones CH, et al. Optimization of molecular approaches to genogroup Neisseria meningitidis carriage isolates and implications for monitoring the impact of new serogroup B vaccines. PLoS One. 2015;10(7):e0132140.  https://doi.org/10.1371/journal.pone.0132140  PMID: 26147212 
  10. Biesbroek G, Sanders EA, Roeselers G, Wang X, Caspers MP, Trzciński K, et al. Deep sequencing analyses of low density microbial communities: working at the boundary of accurate microbiota detection. PLoS One. 2012;7(3):e32942.  https://doi.org/10.1371/journal.pone.0032942  PMID: 22412957 
  11. Marjuki H, Topaz N, Rodriguez-Rivera LD, Ramos E, Potts CC, Chen A, et al. Whole-genome sequencing for characterization of capsule locus and prediction of serogroup of invasive meningococcal isolates. J Clin Microbiol. 2019;57(3):e01609-18.  https://doi.org/10.1128/JCM.01609-18  PMID: 30567750 
  12. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124.  https://doi.org/10.12688/wellcomeopenres.14826.1  PMID: 30345391 
  13. Bratcher HB, Corton C, Jolley KA, Parkhill J, Maiden MC. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics. 2014;15(1):1138.  https://doi.org/10.1186/1471-2164-15-1138  PMID: 25523208 
  14. Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018;28(9):1395-404.  https://doi.org/10.1101/gr.232397.117  PMID: 30049790 
  15. Sóttvarnalæknir. [Chief Epidemiologist]. Þátttaka í almennum bólusetningum barna á Íslandi 2021. [Pediatric vaccination coverage in Iceland 2021]. Reykjavik: Embætti Landlæknis [Directorate of Health]; 2022. Icelandic. Available from: https://island.is/bolusetningar/thatttaka-i-almennum-bolusetningum-barna
  16. Jeppesen CA, Snape MD, Robinson H, Gossger N, John TM, Voysey M, et al. Meningococcal carriage in adolescents in the United Kingdom to inform timing of an adolescent vaccination strategy. J Infect. 2015;71(1):43-52.  https://doi.org/10.1016/j.jinf.2015.02.006  PMID: 25709085 
  17. MacLennan JM, Rodrigues CMC, Bratcher HB, Lekshmi A, Finn A, Oliver J, et al. Meningococcal carriage in periods of high and low invasive meningococcal disease incidence in the UK: comparison of UKMenCar1-4 cross-sectional survey results. Lancet Infect Dis. 2021;21(5):677-87.  https://doi.org/10.1016/S1473-3099(20)30842-2  PMID: 33482143 
  18. McMillan M, Walters L, Mark T, Lawrence A, Leong LEX, Sullivan T, et al. B Part of It study: a longitudinal study to assess carriage of Neisseria meningitidis in first year university students in South Australia. Hum Vaccin Immunother. 2019;15(4):987-94.  https://doi.org/10.1080/21645515.2018.1551672  PMID: 30513251 
  19. Breakwell L, Whaley M, Khan UI, Bandy U, Alexander-Scott N, Dupont L, et al. Meningococcal carriage among a university student population - United States, 2015. Vaccine. 2018;36(1):29-35.  https://doi.org/10.1016/j.vaccine.2017.11.040  PMID: 29183735 
  20. Bogaert D, Hermans PW, Boelens H, Sluijter M, Luijendijk A, Rumke HC, et al. Epidemiology of nasopharyngeal carriage of Neisseria meningitidis in healthy Dutch children. Clin Infect Dis. 2005;40(6):899-902.  https://doi.org/10.1086/428351  PMID: 15736029 
  21. Christensen H, May M, Bowen L, Hickman M, Trotter CL. Meningococcal carriage by age: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(12):853-61.  https://doi.org/10.1016/S1473-3099(10)70251-6  PMID: 21075057 
  22. Olsen SF, Djurhuus B, Rasmussen K, Joensen HD, Larsen SO, Zoffman H, et al. Pharyngeal carriage of Neisseria meningitidis and Neisseria lactamica in households with infants within areas with high and low incidences of meningococcal disease. Epidemiol Infect. 1991;106(3):445-57.  https://doi.org/10.1017/S0950268800067492  PMID: 1904825 
  23. Deasy AM, Guccione E, Dale AP, Andrews N, Evans CM, Bennett JS, et al. Nasal inoculation of the commensal Neisseria lactamica inhibits carriage of Neisseria meningitidis by young adults: A controlled human infection study. Clin Infect Dis. 2015;60(10):1512-20.  https://doi.org/10.1093/cid/civ098  PMID: 25814628 
  24. Esposito S, Zampiero A, Terranova L, Montinaro V, Peves Rios W, Scala A, et al. Comparison of posterior pharyngeal wall and nasopharyngeal swabbing as a means of detecting the carriage of Neisseria meningitidis in adolescents. Eur J Clin Microbiol Infect Dis. 2013;32(9):1129-33.  https://doi.org/10.1007/s10096-013-1856-2  PMID: 23504236 
  25. Halldórsdóttir AM. Sýklalyfjanotkun og sýklalyfjanæmi baktería í mönnum og dýrum á Íslandi 2019. [Antibiotic use and antimicrobial susceptibility of bacteria in humans and animals in Iceland 2019]. Reykjavik: Directorate of Health; 2021. Icelandic. Available from: https://island.is/syklalyfjaanaemi-og-syklalyfjanotkun/skyrslur
  26. McMillan M, Chandrakumar A, Wang HLR, Clarke M, Sullivan TR, Andrews RM, et al. Effectiveness of meningococcal vaccines at reducing invasive meningococcal disease and pharyngeal Neisseria meningitidis carriage: A systematic review and meta-analysis. Clin Infect Dis. 2021;73(3):e609-19.  https://doi.org/10.1093/cid/ciaa1733  PMID: 33212510 
  27. Oldfield NJ, Green LR, Parkhill J, Bayliss CD, Turner DPJ. Limited impact of adolescent meningococcal ACWY vaccination on Neisseria meningitidis serogroup W carriage in university students. J Infect Dis. 2018;217(4):608-16.  https://doi.org/10.1093/infdis/jix596  PMID: 29155998 
  28. Carr JP, MacLennan JM, Plested E, Bratcher HB, Harrison OB, Aley PK, et al. Impact of meningococcal ACWY conjugate vaccines on pharyngeal carriage in adolescents: evidence for herd protection from the UK MenACWY programme. Clin Microbiol Infect. 2022;28(12):1649.e1-8.  https://doi.org/10.1016/j.cmi.2022.07.004  PMID: 35840033 
  29. McMillan M, Walters L, Sullivan T, Leong LEX, Turra M, Lawrence A, et al. Impact of meningococcal B (4CMenB) vaccine on pharyngeal Neisseria meningitidis carriage density and persistence in adolescents. Clin Infect Dis. 2021;73(1):e99-106.  https://doi.org/10.1093/cid/ciaa610  PMID: 32447370 
  30. Willerton L, Lucidarme J, Walker A, Lekshmi A, Clark SA, Walsh L, et al. Antibiotic resistance among invasive Neisseria meningitidis isolates in England, Wales and Northern Ireland (2010/11 to 2018/19). PLoS One. 2021;16(11):e0260677.  https://doi.org/10.1371/journal.pone.0260677  PMID: 34843604 
  31. Freudenburg-de Graaf W, Knol MJ, van der Ende A. Predicted coverage by 4CMenB vaccine against invasive meningococcal disease cases in the Netherlands. Vaccine. 2020;38(49):7850-7.  https://doi.org/10.1016/j.vaccine.2020.10.008  PMID: 33097311 
/content/10.2807/1560-7917.ES.2023.28.39.2300215
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error