-
Dynamics of SARS-CoV-2 seroassay sensitivity: a systematic review and modelling study
- Nana Owusu-Boaitey1,* , Timothy W Russell2 , Gideon Meyerowitz-Katz3 , Andrew T Levin4,5,6 , Daniel Herrera-Esposito7,8,9,*
-
View Affiliations Hide AffiliationsAffiliations: 1 Case Western Reserve University School of Medicine, Cleveland, United States 2 Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom 3 University of Wollongong, Wollongong, Australia 4 Dartmouth College, Hanover, United States 5 National Bureau for Economic Research, Cambridge, United States 6 Centre for Economic Policy Research, London, United Kingdom 7 Department of Psychology, University of Pennsylvania, Philadelphia, United States 8 Laboratorio de Neurociencias, Universidad de la República, Montevideo, Uruguay 9 Centro Interdisciplinario en Ciencia de Datos y Aprendizaje Automático, Universidad de la República, Montevideo, Uruguay * These authors contributed equally to this work.Daniel Herrera-Espositodherrera fcien.edu.uy
-
View Citation Hide Citation
Citation style for this article: Owusu-Boaitey Nana, Russell Timothy W, Meyerowitz-Katz Gideon, Levin Andrew T, Herrera-Esposito Daniel. Dynamics of SARS-CoV-2 seroassay sensitivity: a systematic review and modelling study. Euro Surveill. 2023;28(21):pii=2200809. https://doi.org/10.2807/1560-7917.ES.2023.28.21.2200809 Received: 10 Oct 2022; Accepted: 10 Mar 2023
Abstract
Serological surveys have been the gold standard to estimate numbers of SARS-CoV-2 infections, the dynamics of the epidemic, and disease severity. Serological assays have decaying sensitivity with time that can bias their results, but there is a lack of guidelines to account for this phenomenon for SARS-CoV-2.
Our goal was to assess the sensitivity decay of seroassays for detecting SARS-CoV-2 infections, the dependence of this decay on assay characteristics, and to provide a simple method to correct for this phenomenon.
We performed a systematic review and meta-analysis of SARS-CoV-2 serology studies. We included studies testing previously diagnosed, unvaccinated individuals, and excluded studies of cohorts highly unrepresentative of the general population (e.g. hospitalised patients).
Of the 488 screened studies, 76 studies reporting on 50 different seroassays were included in the analysis. Sensitivity decay depended strongly on the antigen and the analytic technique used by the assay, with average sensitivities ranging between 26% and 98% at 6 months after infection, depending on assay characteristics. We found that a third of the included assays departed considerably from manufacturer specifications after 6 months.
Seroassay sensitivity decay depends on assay characteristics, and for some types of assays, it can make manufacturer specifications highly unreliable. We provide a tool to correct for this phenomenon and to assess the risk of decay for a given assay. Our analysis can guide the design and interpretation of serosurveys for SARS-CoV-2 and other pathogens and quantify systematic biases in the existing serology literature.
Article metrics loading...
Full text loading...
References
-
Brazeau NF, Verity R, Jenks S, Fu H, Whittaker C, Winskill P, et al. Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling. Commun Med (Lond). 2022;2(1):54. https://doi.org/10.1038/s43856-022-00106-7 PMID: 35603270
-
Herrera-Esposito D, de Los Campos G. Age-specific rate of severe and critical SARS-CoV-2 infections estimated with multi-country seroprevalence studies. BMC Infect Dis. 2022;22(1):311. https://doi.org/10.1186/s12879-022-07262-0 PMID: 35351016
-
Ioannidis JPA. Reconciling estimates of global spread and infection fatality rates of COVID-19: An overview of systematic evaluations. Eur J Clin Invest. 2021;51(5):e13554. https://doi.org/10.1111/eci.13554 PMID: 33768536
-
Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol. 2020;35(12):1123-38. https://doi.org/10.1007/s10654-020-00698-1 PMID: 33289900
-
O’Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS, Paireau J, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature. 2021;590(7844):140-5. https://doi.org/10.1038/s41586-020-2918-0 PMID: 33137809
-
Jones JM, Stone M, Sulaeman H, Fink RV, Dave H, Levy ME, et al. Estimated US infection- and vaccine-induced SARS-CoV-2 seroprevalence based on blood donations, July 2020-May 2021. JAMA. 2021;326(14):1400-9. https://doi.org/10.1001/jama.2021.15161 PMID: 34473201
-
Madhi SA, Kwatra G, Myers JE, Jassat W, Dhar N, Mukendi CK, et al. Population immunity and Covid-19 severity with Omicron variant in South Africa. N Engl J Med. 2022;386(14):1314-26. https://doi.org/10.1056/NEJMoa2119658 PMID: 35196424
-
Santos-Hövener C, Neuhauser HK, Rosario AS, Busch M, Schlaud M, Hoffmann R, et al. Serology- and PCR-based cumulative incidence of SARS-CoV-2 infection in adults in a successfully contained early hotspot (CoMoLo study), Germany, May to June 2020. Euro Surveill. 2020;25(47):2001752. https://doi.org/10.2807/1560-7917.ES.2020.25.47.2001752 PMID: 33243353
-
Chapman LAC, Barnard RC, Russell TW, Abbott S, van Zandvoort K, Davies NG, et al. Unexposed populations and potential COVID-19 hospitalisations and deaths in European countries as per data up to 21 November 2021. Euro Surveill. 2022;27(1):2101038. https://doi.org/10.2807/1560-7917.ES.2022.27.1.2101038 PMID: 34991776
-
Duarte N, Yanes-Lane M, Arora RK, Bobrovitz N, Liu M, Bego MG, et al. Adapting serosurveys for the SARS-CoV-2 vaccine era. Open Forum Infect Dis. 2021;9(2):ofab632. https://doi.org/10.1093/ofid/ofab632 PMID: 35103246
-
Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591(7851):639-44. https://doi.org/10.1038/s41586-021-03207-w PMID: 33461210
-
Choe PG, Kim KH, Kang CK, Suh HJ, Kang E, Lee SY, et al. Antibody responses 8 months after asymptomatic or mild SARS-CoV-2 infection. Emerg Infect Dis. 2021;27(3):928-31. https://doi.org/10.3201/eid2703.204543 PMID: 33350923
-
Peluso MJ, Takahashi S, Hakim J, Kelly JD, Torres L, Iyer NS, et al. SARS-CoV-2 antibody magnitude and detectability are driven by disease severity, timing, and assay. Sci Adv. 2021;7(31):eabh3409. https://doi.org/10.1126/sciadv.abh3409 PMID: 34330709
-
Scheiblauer H, Nübling CM, Wolf T, Khodamoradi Y, Bellinghausen C, Sonntagbauer M, et al. Antibody response to SARS-CoV-2 for more than one year - kinetics and persistence of detection are predominantly determined by avidity progression and test design. J Clin Virol. 2022;146:105052. https://doi.org/10.1016/j.jcv.2021.105052 PMID: 34920374
-
Lohse S, Sternjakob-Marthaler A, Lagemann P, Schöpe J, Rissland J, Seiwert N, et al. German federal-state-wide seroprevalence study of 1st SARS-CoV-2 pandemic wave shows importance of long-term antibody test performance. Commun Med (Lond). 2022;2(1):52. https://doi.org/10.1038/s43856-022-00100-z PMID: 35603305
-
Shioda K, Lau MSY, Kraay ANM, Nelson KN, Siegler AJ, Sullivan PS, et al. Estimating the cumulative incidence of SARS-CoV-2 infection and the infection fatality ratio in light of waning antibodies. Epidemiology. 2021;32(4):518-24. https://doi.org/10.1097/EDE.0000000000001361 PMID: 33935138
-
Bergeri I, Whelan MG, Ware H, Subissi L, Nardone A, Lewis HC, et al. Global SARS-CoV-2 seroprevalence from January 2020 to April 2022: A systematic review and meta-analysis of standardized population-based studies. PLoS Med. 2022;19(11):e1004107. https://doi.org/10.1371/journal.pmed.1004107 PMID: 36355774
-
Bond KA, Williams E, Nicholson S, Lim S, Johnson D, Cox B, et al. Longitudinal evaluation of laboratory-based serological assays for SARS-CoV-2 antibody detection. Pathology. 2021;53(6):773-9. https://doi.org/10.1016/j.pathol.2021.05.093 PMID: 34412859
-
Flower B, Brown JC, Simmons B, Moshe M, Frise R, Penn R, et al. Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey. Thorax. 2020;75(12):1082-8. https://doi.org/10.1136/thoraxjnl-2020-215732 PMID: 32796119
-
McCance K, Wise H, Simpson J, Batchelor B, Hale H, McDonald L, et al. Evaluation of SARS-CoV-2 antibody point of care devices in the laboratory and clinical setting. PLoS One. 2022;17(3):e0266086. https://doi.org/10.1371/journal.pone.0266086 PMID: 35358263
-
Perez-Saez J, Zaballa ME, Yerly S, Andrey DO, Meyer B, Eckerle I, et al. , Specchio-COVID19 Study Group. Persistence of anti-SARS-CoV-2 antibodies: immunoassay heterogeneity and implications for serosurveillance. Clin Microbiol Infect. 2021;27(11):1695.e7-12. https://doi.org/10.1016/j.cmi.2021.06.040 PMID: 34245905
-
Chia WN, Zhu F, Ong SWX, Young BE, Fong SW, Le Bert N, et al. Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study. Lancet Microbe. 2021;2(6):e240-9. https://doi.org/10.1016/S2666-5247(21)00025-2 PMID: 33778792
-
Di Germanio C, Simmons G, Kelly K, Martinelli R, Darst O, Azimpouran M, et al. SARS-CoV-2 antibody persistence in COVID-19 convalescent plasma donors: Dependency on assay format and applicability to serosurveillance. Transfusion. 2021;61(9):2677-87. https://doi.org/10.1111/trf.16555 PMID: 34121205
-
He Z, Ren L, Yang J, Guo L, Feng L, Ma C, et al. Seroprevalence and humoral immune durability of anti-SARS-CoV-2 antibodies in Wuhan, China: a longitudinal, population-level, cross-sectional study. Lancet. 2021;397(10279):1075-84. https://doi.org/10.1016/S0140-6736(21)00238-5 PMID: 33743869
-
Lumley SF, Wei J, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, et al. The duration, dynamics, and determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody responses in individual healthcare workers. Clin Infect Dis. 2021;73(3):e699-709. https://doi.org/10.1093/cid/ciab004 PMID: 33400782
-
Wheatley AK, Juno JA, Wang JJ, Selva KJ, Reynaldi A, Tan HX, et al. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat Commun. 2021;12(1):1162. https://doi.org/10.1038/s41467-021-21444-5 PMID: 33608522
-
Levin AT, Owusu-Boaitey N, Pugh S, Fosdick BK, Zwi AB, Malani A, et al. Assessing the burden of COVID-19 in developing countries: systematic review, meta-analysis and public policy implications. BMJ Glob Health. 2022;7(5):e008477. https://doi.org/10.1136/bmjgh-2022-008477 PMID: 35618305
-
Fei Y, Xu H, Zhang X, Musa SS, Zhao S, He D. Seroprevalence and infection attack rate of COVID-19 in Indian cities. Infect Dis Model. 2022;7(2):25-32. https://doi.org/10.1016/j.idm.2022.03.001 PMID: 35287277
-
Cromer D, Juno JA, Khoury D, Reynaldi A, Wheatley AK, Kent SJ, et al. Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection. Nat Rev Immunol. 2021;21(6):395-404. https://doi.org/10.1038/s41577-021-00550-x PMID: 33927374
-
Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538):eabg3055. https://doi.org/10.1126/science.abg3055 PMID: 33658326
-
Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: a probabilistic programming language. J Stat Softw. 2017;76(1):1-32. https://doi.org/10.18637/jss.v076.i01 PMID: 36568334
-
Guidotti E, Ardia D. COVID-19 data hub. J Open Source Softw. 2020;5(51):2376. https://doi.org/10.21105/joss.02376
-
Arora RK, Joseph A, Van Wyk J, Rocco S, Atmaja A, May E, et al. SeroTracker: a global SARS-CoV-2 seroprevalence dashboard. Lancet Infect Dis. 2021;21(4):e75-6. https://doi.org/10.1016/S1473-3099(20)30631-9 PMID: 32763195
-
Karger AB, Brien JD, Christen JM, Dhakal S, Kemp TJ, Klein SL, et al. The serological sciences network (SeroNet) for COVID-19: depth and breadth of serology assays and plans for assay harmonization. MSphere. 2022;7(4):e0019322. https://doi.org/10.1128/msphere.00193-22 PMID: 35703544
-
Axfors C, Ioannidis JPA. Infection fatality rate of COVID-19 in community-dwelling elderly populations. Eur J Epidemiol. 2022;37(3):235-49. https://doi.org/10.1007/s10654-022-00853-w PMID: 35306604
-
Freitas NEM, Santos EF, Leony LM, Silva ÂAO, Daltro RT, Vasconcelos LCM, et al. Double-antigen sandwich ELISA based on chimeric antigens for detection of antibodies to Trypanosoma cruzi in human sera. PLoS Negl Trop Dis. 2022;16(3):e0010290. https://doi.org/10.1371/journal.pntd.0010290 PMID: 35275913
-
Wu FB, Ouyan HQ, Tang XY, Zhou ZX. Double-antigen sandwich time-resolved immunofluorometric assay for the detection of anti-hepatitis C virus total antibodies with improved specificity and sensitivity. J Med Microbiol. 2008;57(Pt 8):947-53. https://doi.org/10.1099/jmm.0.47835-0 PMID: 18628493
-
Stringhini S, Zaballa ME, Pullen N, Perez-Saez J, de Mestral C, Loizeau AJ, et al. Seroprevalence of anti-SARS-CoV-2 antibodies 6 months into the vaccination campaign in Geneva, Switzerland, 1 June to 7 July 2021. Euro Surveill. 2021;26(43):2100830. https://doi.org/10.2807/1560-7917.ES.2021.26.43.2100830 PMID: 34713799
-
Theel ES, Slev P, Wheeler S, Couturier MR, Wong SJ, Kadkhoda K. The role of antibody testing for SARS-CoV-2: is there one? J Clin Microbiol. 2020;58(8):e00797-20. https://doi.org/10.1128/JCM.00797-20 PMID: 32350047
-
Pérez-Olmeda M, Saugar JM, Fernández-García A, Pérez-Gómez B, Pollán M, Avellón A, et al. Evolution of antibodies against SARS-CoV-2 over seven months: Experience of the nationwide seroprevalence ENE-COVID study in Spain. J Clin Virol. 2022;149:105130. https://doi.org/10.1016/j.jcv.2022.105130 PMID: 35305377
-
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(71):n71. https://doi.org/10.1136/bmj.n71 PMID: 33782057
-
Mallon PWG, Tinago W, Leon AG, McCann K, Kenny G, McGettrick P, et al. Dynamic change and clinical relevance of postinfectious SARS-CoV-2 antibody responses. Open Forum Infect Dis. 2021;8(8):ofab122. https://doi.org/10.1093/ofid/ofab122 PMID: 34377721
-
Eberhardt KA, Dewald F, Heger E, Gieselmann L, Vanshylla K, Wirtz M, et al. Evaluation of a new spike (S)-protein-based commercial immunoassay for the detection of anti-SARS-CoV-2 IgG. Microorganisms. 2021;9(4):733. https://doi.org/10.3390/microorganisms9040733 PMID: 33807490
-
McGregor R, Craigie A, Jack S, Upton A, Moreland NJ, Ussher J. The persistence of neutralising antibodies up to 11 months after SARS-CoV-2 infection in the southern region of New Zealand. medRxiv; 2021 [cited 2022 Sep 7]. p. 2021.10.26.21265501. Available from: https://www.medrxiv.org/content/10.1101/2021.10.26.21265501v1 https://doi.org/10.1101/2021.10.26.21265501 https://doi.org/10.1101/2021.10.26.21265501
-
Knabl L, Mitra T, Kimpel J, Rössler A, Volland A, Walser A, et al. High SARS-CoV-2 seroprevalence in children and adults in the Austrian ski resort of Ischgl. Commun Med (Lond). 2021;1(1):4. https://doi.org/10.1038/s43856-021-00007-1 PMID: 34870284
-
Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020;396(10250):535-44. https://doi.org/10.1016/S0140-6736(20)31483-5 PMID: 32645347
-
Samore MH, Looney A, Orleans B, Greene T, Seegert N, Delgado JC, et al. Probability-based estimates of severe acute respiratory syndrome coronavirus 2 seroprevalence and detection fraction, Utah, USA. Emerg Infect Dis. 2021;27(11):2786-94. https://doi.org/10.3201/eid2711.204435 PMID: 34469285
-
Tadesse EB, Endris AA, Solomon H, Alayu M, Kebede A, Eshetu K, et al. Seroprevalence and risk factors for SARS-CoV-2 Infection in selected urban areas in Ethiopia: a cross-sectional evaluation during July 2020. Int J Infect Dis. 2021;111:179-85. https://doi.org/10.1016/j.ijid.2021.08.028 PMID: 34411720
-
Murhekar MV, Bhatnagar T, Selvaraju S, Saravanakumar V, Thangaraj JWV, Shah N, et al. SARS-CoV-2 antibody seroprevalence in India, August-September, 2020: findings from the second nationwide household serosurvey. Lancet Glob Health. 2021;9(3):e257-66. https://doi.org/10.1016/S2214-109X(20)30544-1 PMID: 33515512
-
Ayub T, Raja MW, Khan SMS, Haq I, Qureshi MA, Majid S, et al. Seroprevalence of SARS CoV 2 specific Ig G antibodies in District Srinagar, Kashmir: a population based study. Int J Community Med Public Health. 2021;8(4):1792. https://doi.org/10.18203/2394-6040.ijcmph20211236
-
Khan SMS, Qurieshi MA, Haq I, Majid S, Ahmad J, Ayub T, et al. Seroprevalence of SARS-CoV-2-specific IgG antibodies in Kashmir, India, 7 months after the first reported local COVID-19 case: results of a population-based seroprevalence survey from October to November 2020. BMJ Open. 2021;11(9):e053791. https://doi.org/10.1136/bmjopen-2021-053791 PMID: 34556519
-
Murhekar MV, Bhatnagar T, Thangaraj JWV, Saravanakumar V, Santhosh Kumar M, Selvaraju S, et al. , ICMR serosurveillance group. Seroprevalence of IgG antibodies against SARS-CoV-2 among the general population and healthcare workers in India, June-July 2021: A population-based cross-sectional study. PLoS Med. 2021;18(12):e1003877. https://doi.org/10.1371/journal.pmed.1003877 PMID: 34890407
-
Murhekar MV, Bhatnagar T, Thangaraj JWV, Saravanakumar V, Kumar MS, Selvaraju S, et al. SARS-CoV-2 seroprevalence among the general population and healthcare workers in India, December 2020-January 2021. Int J Infect Dis. 2021;108:145-55. https://doi.org/10.1016/j.ijid.2021.05.040 PMID: 34022338
-
Thiruvengadam R, Chattopadhyay S, Mehdi F, Desiraju BK, Chaudhuri S, Singh S, et al. Longitudinal serology of SARS-CoV-2-infected individuals in India: a prospective cohort study. Am J Trop Med Hyg. 2021;105(1):66-72. https://doi.org/10.4269/ajtmh.21-0164 PMID: 34003792
-
Tea F, Ospina Stella A, Aggarwal A, Ross Darley D, Pilli D, Vitale D, et al. SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants. PLoS Med. 2021;18(7):e1003656. https://doi.org/10.1371/journal.pmed.1003656 PMID: 34228725
-
Garritsen A, Scholzen A, van den Nieuwenhof DWA, Smits APF, Datema ES, van Galen LS, et al. Two-tiered SARS-CoV-2 seroconversion screening in the Netherlands and stability of nucleocapsid, spike protein domain 1 and neutralizing antibodies. Infect Dis (Lond). 2021;53(7):498-512. https://doi.org/10.1080/23744235.2021.1893378 PMID: 33684020
-
Muecksch F, Wise H, Batchelor B, Squires M, Semple E, Richardson C, et al. Longitudinal serological analysis and neutralizing antibody levels in coronavirus disease 2019 convalescent patients. J Infect Dis. 2021;223(3):389-98. https://doi.org/10.1093/infdis/jiaa659 PMID: 33140086
-
Kahre E, Galow L, Unrath M, Haag L, Blankenburg J, Dalpke AH, et al. Kinetics and seroprevalence of SARS-CoV-2 antibodies: a comparison of 3 different assays. Sci Rep. 2021;11(1):14893. https://doi.org/10.1038/s41598-021-94453-5 PMID: 34290329
-
Kumar MS, Thangaraj JWV, Saravanakumar V, Selvaraju S, Kumar CPG, Sabarinathan R, et al. Monitoring the trend of SARS-CoV-2 seroprevalence in Chennai, India, July and October 2020. Trans R Soc Trop Med Hyg. 2021;115(11):1350-2.
-
Šmigelskas K, Petrikonis K, Kasiulevičius V, Kalėdienė R, Jakaitienė A, Kaselienė S, et al. SARS-CoV-2 seroprevalence in Lithuania: results of national population survey. Acta Med Litu. 2021;28(1):48-58. https://doi.org/10.15388/Amed.2020.28.1.2 PMID: 34393628
-
Kennedy JL, Forrest JC, Young SG, Amick B, Williams M, James L, et al. Temporal variations in seroprevalence of severe acute respiratory syndrome coronavirus 2 infections by race and ethnicity in Arkansas. Open Forum Infect Dis. 2022;9(5):ofac154. https://doi.org/10.1093/ofid/ofac154 PMID: 35493126
-
Sullivan PS, Siegler AJ, Shioda K, Hall EW, Bradley H, Sanchez T, et al. Severe acute respiratory syndrome coronavirus 2 cumulative incidence, United States, August 2020-December 2020. Clin Infect Dis. 2022;74(7):1141-50. https://doi.org/10.1093/cid/ciab626 PMID: 34245245
-
Bushnik T, Earl S, Clark J, Cabot J. COVID-19 infection in the Canadian household population. Health Rep. 2022;33(4):24-33."https://pubmed.ncbi.nlm.nih.gov/35442611" PMID: 35442611
-
Schonfeld D, Fernández H, Ramírez J, Acosta D, Becerra J, Wettstein M, et al. SARS-CoV-2 seroprevalence in the city of Puerto Madryn: Underdiagnosis and relevance of children in the pandemic. PLoS One. 2022;17(3):e0263679. https://doi.org/10.1371/journal.pone.0263679 PMID: 35286328
-
Ojeda DS, Gonzalez Lopez Ledesma MM, Pallarés HM, Costa Navarro GS, Sanchez L, Perazzi B, et al. Emergency response for evaluating SARS-CoV-2 immune status, seroprevalence and convalescent plasma in Argentina. PLoS Pathog. 2021;17(1):e1009161. https://doi.org/10.1371/journal.ppat.1009161 PMID: 33444413
-
Longueira Y, Polo ML, Turk G, Laufer N, InViV working group, Biobanco de Enfermedades Infecciosas Colección COVID19 working group. Dynamics of SARS-CoV-2-specific antibodies among COVID19 biobank donors in Argentina. Heliyon. 2021;7(10):e08140. https://doi.org/10.1016/j.heliyon.2021.e08140 PMID: 34642643
-
Dorigatti I, Lavezzo E, Manuto L, Ciavarella C, Pacenti M, Boldrin C, et al. SARS-CoV-2 antibody dynamics and transmission from community-wide serological testing in the Italian municipality of Vo’. Nat Commun. 2021;12(1):4383. https://doi.org/10.1038/s41467-021-24622-7 PMID: 34282139
-
Kar SS, Sarkar S, Murali S, Dhodapkar R, Joseph NM, Aggarwal R. Prevalence and time trend of SARS-CoV-2 infection in Puducherry, India, August-October 2020. Emerg Infect Dis. 2021;27(2):666-9. https://doi.org/10.3201/eid2702.204480 PMID: 33496645
-
Herlinda O, Bella A, Kusnadi G, Swasthika Nurshadrina D, Thoriq Akbar M, Nida S, et al. Seroprevalence of antibodies against SARS-Cov-2 in the high impacted sub-district in Jakarta, Indonesia. PLoS One. 2021;16(12):e0261931. https://doi.org/10.1371/journal.pone.0261931 PMID: 34941968
-
Laxmaiah A, Rao NM, Arlappa N, Babu J, Kumar PU, Singh P, et al. SARS-CoV-2 seroprevalence in the city of Hyderabad, India in early 2021. IJID Reg. 2022;2:1-7. https://doi.org/10.1016/j.ijregi.2021.10.009 PMID: 35721436
-
National Institute of Infectious Diseases. 2021 seroepidemiological survey report for novel coronavirus infection. Tokyo: National Institute of Infectious Diseases. [Accessed: 7 Sep 2022]. Japanese. Available from: https://www.mhlw.go.jp/content/10900000/000934787.pdf
-
Kshatri JS, Bhattacharya D, Kanungo S, Giri S, Palo SK, Parai D, et al. Serological surveys to inform SARS-CoV-2 epidemic curve: a cross-sectional study from Odisha, India. Sci Rep. 2021;11(1):10551. https://doi.org/10.1038/s41598-021-89877-y PMID: 34006960
-
Kshatri JS, Bhattacharya D, Praharaj I, Mansingh A, Parai D, Kanungo S, et al. Seroprevalence of SARS-CoV-2 in Bhubaneswar, India: findings from three rounds of community surveys. Epidemiol Infect. 2021;149:e139. https://doi.org/10.1017/S0950268821000972 PMID: 33902776
-
Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E, et al. Humoral immune response to SARS-CoV-2 in Iceland. N Engl J Med. 2020;383(18):1724-34. https://doi.org/10.1056/NEJMoa2026116 PMID: 32871063
-
Goto A, Go H, Miyakawa K, Yamaoka Y, Ohtake N, Kubo S, et al. Sustained neutralizing antibodies 6 months following infection in 376 Japanese COVID-19 survivors. Front Microbiol. 2021;12:661187. https://doi.org/10.3389/fmicb.2021.661187 PMID: 34025615
-
Alkharaan H, Bayati S, Hellström C, Aleman S, Olsson A, Lindahl K, et al. Persisting salivary IgG against SARS-CoV-2 at 9 months after mild COVID-19: a complementary approach to population surveys. J Infect Dis. 2021;224(3):407-14. https://doi.org/10.1093/infdis/jiab256 PMID: 33978762
-
Sharma N, Sharma P, Basu S, Saxena S, Chawla R, Dushyant K, et al. The seroprevalence of severe acute respiratory syndrome coronavirus 2 in Delhi, India: a repeated population-based seroepidemiological study. Trans R Soc Trop Med Hyg. 2022;116(3):242-51. https://doi.org/10.1093/trstmh/trab109 PMID: 34339514
-
Satpati PS, Sarangi SS, Gantait KS, Endow S, Mandal NC, Panchanan K, et al. Sero-surveillance (IgG) of SARS-CoV-2 among asymptomatic general population of Paschim Medinipur, West Bengal, India. medRxiv; 2020.09.12.20193219 . https://doi.org/10.1101/2020.09.12.20193219
-
Warszawski J, Beaumont AL, Seng R, de Lamballerie X, Rahib D, Lydié N, et al. Prevalence of SARS-Cov-2 antibodies and living conditions: the French national random population-based EPICOV cohort. BMC Infect Dis. 2022;22(1):41. https://doi.org/10.1186/s12879-021-06973-0 PMID: 35000580
-
Carrat F, de Lamballerie X, Rahib D, Blanché H, Lapidus N, Artaud F, et al. Antibody status and cumulative incidence of SARS-CoV-2 infection among adults in three regions of France following the first lockdown and associated risk factors: a multicohort study. Int J Epidemiol. 2021;50(5):1458-72. https://doi.org/10.1093/ije/dyab110 PMID: 34293141
-
Ghose A, Bhattacharya S, Karthikeyan AS, Kudale A, Monteiro JM, Joshi A, et al. Community prevalence of antibodies to SARS-CoV-2 and correlates of protective immunity in an Indian metropolitan city. medRxiv; 2020.11.17.20228155 . https://doi.org/10.1101/2020.11.17.20228155
-
Gornyk D, Harries M, Glöckner S, Strengert M, Kerrinnes T, Bojara G, et al. SARS-CoV-2 seroprevalence in Germany - A population based sequential study in five regions. Rochester, NY: Social Science Research Network; 2021. Preprint. Available from:
-
Robert Koch Institute (RKI). Corona-Monitoring lokal. [Local corona monitoring]. Berlin: RKI. [Accessed: 7 Sep 2022]. German. Available from: https://www.rki.de/DE/Content/Gesundheitsmonitoring/Studien/cml-studie/Factsheet_Straubing.html
-
Alvim RGF, Lima TM, Rodrigues DAS, Marsili FF, Bozza VBT, Higa LM, et al. From a recombinant key antigen to an accurate, affordable serological test: Lessons learnt from COVID-19 for future pandemics. Biochem Eng J. 2022;186:108537. https://doi.org/10.1016/j.bej.2022.108537 PMID: 35874089
-
Vanshylla K, Cristanziano VD, Kleipass F, Dewald F, Schommers P, Gieselmann L, et al. Kinetics and correlates of the neutralizing antibody response to SARS-CoV-2. bioRxiv; 2021.01.26.428207. https://doi.org/10.1101/2021.01.26.428207
-
Parrott JC, Maleki AN, Vassor VE, Osahan S, Hsin Y, Sanderson M, et al. Prevalence of SARS-CoV-2 antibodies in New York City adults, June-October 2020: a population-based survey. J Infect Dis. 2021;224(2):188-95. https://doi.org/10.1093/infdis/jiab296 PMID: 34086923
-
Ärzteblatt DÄG Redaktion Deutsches. SARS-CoV-2 Seroprevalence in Germany. A population-based sequential study in seven Regions (03.12.2021). Dtsch Arztebl Int. 2021;118:824. https://doi.org/10.3238/arztebl.m2021.0364
-
Robert Koch Institute (RKI). Seroepidemiologische Studie zur Abschätzung der Verbreitung von SARS-CoV-2 in der Bevölkerung an besonders betroffenen Orten in Deutschland. Corona-Monitoring local. Abschlussbericht 2021. [Seroepidemiological study to estimate the spread of SARS-CoV-2 in the population in particularly affected locations in Germany. Llocal corona monitoring. Final report 2021]. Berlin: RKI; 2021. German. Available from: https://www.rki.de/DE/Content/Gesundheitsmonitoring/Studien/cml-studie/Dokumente/Abschlussbericht_2021.pdf?__blob=publicationFile
-
Neuhauser H, Schaffrath Rosario A, Butschalowsky H, Haller S, Hoebel J, Michel J, et al. Germany’s low SARS-CoV-2 seroprevalence confirms effective containment in 2020: Results of the nationwide RKI-SOEP study. medRxiv. 2021.11.22.21266711. https://doi.org/10.1101/2021.11.22.21266711 https://doi.org/10.1101/2021.11.22.21266711
-
Ward H, Atchison C, Whitaker M, Ainslie KEC, Elliott J, Okell L, et al. SARS-CoV-2 antibody prevalence in England following the first peak of the pandemic. Nat Commun. 2021;12(1):905. https://doi.org/10.1038/s41467-021-21237-w PMID: 33568663
-
Ward H, Cooke GS, Atchison C, Whitaker M, Elliott J, Moshe M, et al. Prevalence of antibody positivity to SARS-CoV-2 following the first peak of infection in England: Serial cross-sectional studies of 365,000 adults. Lancet Reg Health Eur. 2021;4:100098. https://doi.org/10.1016/j.lanepe.2021.100098 PMID: 33969335
-
Ward H, Atchison C, Whitaker M, Donnelly CA, Riley S, Ashby D, et al. Increasing SARS-CoV-2 antibody prevalence in England at the start of the second wave: REACT-2 Round 4 cross-sectional study in 160,000 adults. medRxiv. 2021.07.21.21260926 https://doi.org/10.1101/2021.07.21.21260926
-
Iruzubieta P, Fernández-Lanas T, Rasines L, Cayon L, Álvarez-Cancelo A, Santos-Laso A, et al. Feasibility of large-scale population testing for SARS-CoV-2 detection by self-testing at home. Sci Rep. 2021;11(1):9819. https://doi.org/10.1038/s41598-021-89236-x PMID: 33972607
-
Haveri A, Ekström N, Solastie A, Virta C, Österlund P, Isosaari E, et al. Persistence of neutralizing antibodies a year after SARS-CoV-2 infection in humans. Eur J Immunol. 2021;51(12):3202-13. https://doi.org/10.1002/eji.202149535 PMID: 34580856
-
Finnish Institute for Health and Welfare (THL). Study by THL and Welfare and the City of Helsinki. Antibodies elicited by coronavirus infection persist for at least four months. Helsinki: THL; 2020. Available from: https://thl.fi/en/web/thlfi-en/-/study-by-thl-and-welfare-and-the-city-of-helsinki-antibodies-elicited-by-coronavirus-infection-persist-for-at-least-four-months
-
Finnish Institute for Health and Welfare (THL). THL’s study: Majority of people who have had a coronavirus infection retain antibodies for over six months. Helsinki: THL; 2020. Available from: https://thl.fi/en/web/thlfi-en/-/thl-s-study-majority-of-people-who-have-had-a-coronavirus-infection-retain-antibodies-for-over-six-months
-
Mutevedzi PC, Kawonga M, Kwatra G, Moultrie A, Baillie V, Mabena N, et al. Estimated SARS-CoV-2 infection rate and fatality risk in Gauteng Province, South Africa: a population-based seroepidemiological survey. Int J Epidemiol. 2022;51(2):404-17. https://doi.org/10.1093/ije/dyab217 PMID: 34718591
-
Cherif I, Kharroubi G, Chaabane S, Yazidi R, Dellagi M, Snoussi MA, et al. COVID-19 in Tunisia (North Africa): Seroprevalence of SARS-CoV-2 in the general population of the capital city Tunis. Diagnostics (Basel). 2022;12(4):971. https://doi.org/10.3390/diagnostics12040971 PMID: 35454019
-
Royo-Cebrecos C, Vilanova D, López J, Arroyo V, Pons M, Francisco G, et al. Mass SARS-CoV-2 serological screening, a population-based study in the Principality of Andorra. Lancet Reg Health Eur. 2021;5:100119. https://doi.org/10.1016/j.lanepe.2021.100119 PMID: 34557824
-
Fogh K, Strange JE, Scharff BFSS, Eriksen ARR, Hasselbalch RB, Bundgaard H, et al. Testing Denmark: a Danish nationwide surveillance study of COVID-19. Microbiol Spectr. 2021;9(3):e0133021. https://doi.org/10.1128/Spectrum.01330-21 PMID: 34908473
-
Sood N, Pernet O, Lam CN, Klipp A, Kotha R, Kovacs A, et al. Seroprevalence of antibodies specific to receptor binding domain of SARS-CoV-2 and vaccination coverage among adults in Los Angeles County, April 2021: The LA pandemic surveillance cohort study. JAMA Netw Open. 2022;5(1):e2144258. https://doi.org/10.1001/jamanetworkopen.2021.44258 PMID: 35050360
-
Matias WR, Fulcher IR, Sauer SM, Nolan CP, Guillaume Y, Zhu J, et al. Disparities in SARS-CoV-2 exposure: evidence from a citywide seroprevalence study in Holyoke, Massachusetts, USA. medRxiv; 2021.10.13.21264975 . https://doi.org/10.1101/2021.10.13.21264975
-
Giuliano AR, Pilon-Thomas S, Schell MJ, Abrahamsen M, Islam JY, Isaacs-Soriano K, et al. SARS-CoV-2 period seroprevalence and related factors, Hillsborough County, Florida, USA, October 2020-March 2021. Emerg Infect Dis. 2022;28(3):556-63. https://doi.org/10.3201/eid2803.211495 PMID: 35081021
-
Ministerio de Sanidad (MISAN). Estudio ENE-COVID: Informe final estudio nacional de sero-epidemiología de la infección por SARS-CoV-2 en España. [ENE-COVID study: Final report of the national sero-epidemiological study of SARS-CoV-2 infection in Spain]. Madrid: MISAN; 2020. Spanish. Available from: https://portalcne.isciii.es/enecovid19/informes/informe_final.pdf
-
Ministerio de Sanidad (MISAN). Estudio ENE-COVID: cuarta ronda estudio nacional de sero-epidemiología de la infección por SARS-CoV-2 en España. [ENE-COVID study: fourth round national study of sero-epidemiology of SARS-CoV-2 infection in Spain]. Madrid: MISAN; 2020. Spanish. Available from: https://www.sanidad.gob.es/gabinetePrensa/notaPrensa/pdf/15.12151220163348113.pdf
-
Blankenberger J, Kaufmann M, Albanese E, Amati R, Anker D, Camerini AL, et al. Is living in a household with children associated with SARS-CoV-2 seropositivity in adults? Results from the Swiss national seroprevalence study Corona Immunitas. BMC Med. 2022;20(1):233. https://doi.org/10.1186/s12916-022-02431-z PMID: 35725472
-
Dupraz J, Butty A, Duperrex O, Estoppey S, Faivre V, Thabard J, et al. Prevalence of SARS-CoV-2 in household members and other close contacts of COVID-19 cases: a serologic study in canton of Vaud, Switzerland. Open Forum Infect Dis. 2021;8(7):ofab149. https://doi.org/10.1093/ofid/ofab149 PMID: 34307723
-
Canto E Castro L, Pereira AHG, Ribeiro R, Alves C, Veloso L, Vicente V, et al. Prevalence of SARS-CoV-2 antibodies after first 6 months of COVID-19 pandemic, Portugal. Emerg Infect Dis. 2021;27(11):2878-81. https://doi.org/10.3201/eid2711.210636 PMID: 34437830
-
Reyes-Vega MF, Soto-Cabezas MG, Cárdenas F, Martel KS, Valle A, Valverde J, et al. SARS-CoV-2 prevalence associated to low socioeconomic status and overcrowding in an LMIC megacity: A population-based seroepidemiological survey in Lima, Peru. EClinicalMedicine. 2021;34:100801. https://doi.org/10.1016/j.eclinm.2021.100801 PMID: 33817611
-
Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol. 2020;5(52):eabe5511. https://doi.org/10.1126/sciimmunol.abe5511 PMID: 33033173
-
Hoballah A, El Haidari R, Siblany G, Abdel Sater F, Mansour S, Hassan H, et al. SARS-CoV-2 antibody seroprevalence in Lebanon: findings from the first nationwide serosurvey. BMC Infect Dis. 2022;22(1):42. https://doi.org/10.1186/s12879-022-07031-z PMID: 35012464
-
Silveira MF, Mesenburg M, Dellagostin OA, Oliveira NR, Maia MAC, Santos FDS, et al. Time-dependent decay of detectable antibodies against SARS-CoV-2: a comparison of ELISA with two batches of a lateral-flow test. Rochester, NY: Social Science Research Network; 2021. Report No.: ID 3757411. https://doi.org/10.2139/ssrn.3757411 https://doi.org/10.2139/ssrn.3757411
-
Mahajan S, Srinivasan R, Redlich CA, Huston SK, Anastasio KM, Cashman L, et al. Seroprevalence of SARS-CoV-2-specific IgG antibodies among adults living in Connecticut: post-infection prevalence (PIP) study. Am J Med. 2021;134(4):526-534.e11. https://doi.org/10.1016/j.amjmed.2020.09.024 PMID: 33130124
-
Sharma N, Sharma P, Basu S, Bakshi R, Gupta E, Agarwal R, et al. Second wave of the COVID-19 pandemic in Delhi, India: high seroprevalence not a deterrent? Cureus. 2021;13(10):e19000. https://doi.org/10.7759/cureus.19000 PMID: 34853742
-
Sharma P, Basu S, Mishra S, Gupta E, Agarwal R, Kale P, et al. SARS-CoV-2 seroprevalence in Delhi, India, during - September-October 2021 – a population-based seroepidemiological study. Cureus. 2022;14(7):e27428. https://doi.org/10.7759/cureus.27428 PMID: 36051724
-
Abdul-Raheem R, Moosa S, Waheed F, Aboobakuru M, Ahmed IN, Rafeeg FN, et al. A sero-epidemiological study after two waves of the COVID-19 epidemic. Asian Pac J Allergy Immunol. 2021."https://pubmed.ncbi.nlm.nih.gov/34953474" PMID: 34953474
-
Cito F, Amato L, Di Giuseppe A, Danzetta ML, Iannetti S, Petrini A, et al. A COVID-19 Hotspot Area: Activities and Epidemiological Findings. Microorganisms. 2020;8(11):1711. https://doi.org/10.3390/microorganisms8111711 PMID: 33142840
-
Espenhain L, Tribler S, Sværke Jørgensen C, Holm Hansen C, Wolff Sönksen U, Ethelberg S. Prevalence of SARS-CoV-2 antibodies in Denmark: nationwide, population-based seroepidemiological study. Eur J Epidemiol. 2021;36(7):715-25. https://doi.org/10.1007/s10654-021-00796-8 PMID: 34420152
-
Statens Serum Institut (SSI). Covid-19: Den Nationale Prævalensundersøgelse. Resultaterne fra 4. runde af antistofundersøgelse med 50.000 udtrukne borgere, uge 9-12, 2021. [Covid-19: The national prevalence survey. The results of the 4th round of antibody testing with 50,000 selected citizens, week 9-12, 2021]. Copenhagen: SSI; 2021. Danish. Available from: https://files.ssi.dk/praevalensundersoegelse_runde4
-
Statens Serum Institut (SSI). Covid-19: Den Nationale Prævalensundersøgelse Resultaterne fra 5. runde af prævalensundersøgelsen med 75.000 udtrukne borgere, uge 19-23, 2021. [Covid-19: The national prevalence survey. The results of the 5th round of the prevalence survey with 75,000 selected citizens, week 19-23, 2021]. Copenhagen: SSI; 2021. Danish. Available from: https://files.ssi.dk/praevalensundersoegelse_runde5
Data & Media loading...
Supplementary data
-
-
Supplement
-