1887
Rapid communication Open Access
Like 0

Abstract

We report a ceftriaxone-resistant, multidrug-resistant urogenital in a female sex worker in Sweden, September 2022, who was treated with ceftriaxone 1 g, but did not return for test-of-cure. Whole genome sequencing of isolate SE690 identified MLST ST8130, NG-STAR CC1885 (new NG-STAR ST4859) and mosaic . The latter, causing ceftriaxone resistance in the internationally spreading FC428 clone, has now also spread to the more antimicrobial-susceptible genomic lineage B, showing that strains across the gonococcal phylogeny can develop ceftriaxone resistance.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.10.2300125
2023-03-09
2025-01-15
/content/10.2807/1560-7917.ES.2023.28.10.2300125
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/10/eurosurv-28-10-1.html?itemId=/content/10.2807/1560-7917.ES.2023.28.10.2300125&mimeType=html&fmt=ahah

References

  1. Jacobsson S, Golparian D, Oxelbark J, Franceschi F, Brown D, Louie A, et al. Pharmacodynamic evaluation of zoliflodacin treatment of Neisseria gonorrhoeae strains with amino acid substitutions in the zoliflodacin target gyrb using a dynamic hollow fiber infection model. Front Pharmacol. 2022;13:874176.  https://doi.org/10.3389/fphar.2022.874176  PMID: 35496288 
  2. Taylor SN, Marrazzo J, Batteiger BE, Hook EW 3rd, Seña AC, Long J, et al. Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N Engl J Med. 2018;379(19):1835-45.  https://doi.org/10.1056/NEJMoa1706988  PMID: 30403954 
  3. Jacobsson S, Golparian D, Oxelbark J, Wicha WW, da Costa RMA, Franceschi F, et al. Pharmacodynamic evaluation of lefamulin in the treatment of gonorrhea using a hollow fiber infection model simulating Neisseria gonorrhoeae infections. Front Pharmacol. 2022;13:1035841.  https://doi.org/10.3389/fphar.2022.1035841  PMID: 36452226 
  4. Berçot B, Caméléna F, Mérimèche M, Jacobsson S, Sbaa G, Mainardis M, et al. Ceftriaxone-resistant, multidrug-resistant Neisseria gonorrhoeae with a novel mosaic penA-237.001 gene, France, June 2022. Euro Surveill. 2022;27(50):2200899.  https://doi.org/10.2807/1560-7917.ES.2022.27.50.2200899  PMID: 36695466 
  5. Jacobsson S, Paukner S, Golparian D, Jensen JS, Unemo M. In vitro activity of the novel pleuromutilin lefamulin (BC-3781) and effect of efflux pump inactivation on multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2017;61(11):e01497-17.  https://doi.org/10.1128/AAC.01497-17  PMID: 28893785 
  6. Pleininger S, Indra A, Golparian D, Heger F, Schindler S, Jacobsson S, et al. Extensively drug-resistant (XDR) Neisseria gonorrhoeae causing possible gonorrhoea treatment failure with ceftriaxone plus azithromycin in Austria, April 2022. Euro Surveill. 2022;27(24):2200455.  https://doi.org/10.2807/1560-7917.ES.2022.27.24.2200455  PMID: 35713023 
  7. Golparian D, Pleininger S, Jacobsson S, Indra A, Unemo M. Complete reference genome sequence of the extensively drug-resistant strain Neisseria gonorrhoeae AT159, with ceftriaxone resistance and high-level azithromycin resistance, using Nanopore Q20+ chemistry and Illumina sequencing. Microbiol Resour Announc. 2022;11(9):e0074422.  https://doi.org/10.1128/mra.00744-22  PMID: 36005764 
  8. Nakayama S, Shimuta K, Furubayashi K, Kawahata T, Unemo M, Ohnishi M. New ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan. Antimicrob Agents Chemother. 2016;60(7):4339-41.  https://doi.org/10.1128/AAC.00504-16  PMID: 27067334 
  9. Poncin T, Merimeche M, Braille A, Mainardis M, Bebear C, Jacquier H, et al. Two cases of multidrug-resistant Neisseria gonorrhoeae related to travel in south-eastern Asia, France, June 2019. Euro Surveill. 2019;24(36):1900528.  https://doi.org/10.2807/1560-7917.ES.2019.24.36.1900528  PMID: 31507264 
  10. Lahra MM, Martin I, Demczuk W, Jennison AV, Lee K-I, Nakayama S-I, et al. Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg Infect Dis. 2018;24(4):735-40.  https://doi.org/10.3201/eid2404.171873  PMID: 29553335 
  11. Zhou K, Chen SC, Yang F, van der Veen S, Yin YP. Impact of the gonococcal FC428 penA allele 60.001 on ceftriaxone resistance and biological fitness. Emerg Microbes Infect. 2020;9(1):1219-29.  https://doi.org/10.1080/22221751.2020.1773325  PMID: 32438866 
  12. Golparian D, Rose L, Lynam A, Mohamed A, Bercot B, Ohnishi M, et al. Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. Euro Surveill. 2018;23(47):1800617.  https://doi.org/10.2807/1560-7917.ES.2018.23.47.1800617  PMID: 30482267 
  13. Day M, Pitt R, Mody N, Saunders J, Rai R, Nori A, et al. Detection of 10 cases of ceftriaxone-resistant Neisseria gonorrhoeae in the United Kingdom, December 2021 to June 2022. Euro Surveill. 2022;27(46):2200803.  https://doi.org/10.2807/1560-7917.ES.2022.27.46.2200803  PMID: 36398578 
  14. Lin X, Chen W, Xie Q, Yu Y, Liao Y, Feng Z, et al. Dissemination and genome analysis of high-level ceftriaxone-resistant penA 60.001 Neisseria gonorrhoeae strains from the Guangdong Gonococcal antibiotics susceptibility Programme (GD-GASP), 2016-2019. Emerg Microbes Infect. 2022;11(1):344-50.  https://doi.org/10.1080/22221751.2021.2011618  PMID: 34994305 
  15. Eyre DW, Sanderson ND, Lord E, Regisford-Reimmer N, Chau K, Barker L, et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill. 2018;23(27):1800323.  https://doi.org/10.2807/1560-7917.ES.2018.23.27.1800323  PMID: 29991383 
  16. Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014;27(3):587-613.  https://doi.org/10.1128/CMR.00010-14  PMID: 24982323 
  17. Unemo M, Golparian D, Sánchez-Busó L, Grad Y, Jacobsson S, Ohnishi M, et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother. 2016;71(11):3096-108.  https://doi.org/10.1093/jac/dkw288  PMID: 27432602 
  18. European Centre for Disease Prevention and Control (ECDC). Gonococcal antimicrobial susceptibility surveillance in the Europe Union/European Economic Area. Summary of results 2020. Stockholm: ECDC; 2022. Available from: www.ecdc.europa.eu/en/publications-data/gonococcal-antimicrobial-susceptibility-surveillance-2020
  19. Swedres-Svarm. 2021. Sales of antibiotics and occurrence of resistance in Sweden. Solna/Uppsala: Public Health Agency of Sweden/National Veterinary Institute; 2022. ISSN1650-6332. Available from: www.sva.se/media/8da965da486b11e/swedres_svarm_2021.pdf
  20. Golparian D, Ohlsson A, Janson H, Lidbrink P, Richtner T, Ekelund O, et al. Four treatment failures of pharyngeal gonorrhoea with ceftriaxone (500 mg) or cefotaxime (500 mg), Sweden, 2013 and 2014. Euro Surveill. 2014;19(30):20862.  https://doi.org/10.2807/1560-7917.ES2014.19.30.20862  PMID: 25108533 
  21. Hadad R, Golparian D, Velicko I, Ohlsson AK, Lindroth Y, Ericson EL, et al. First National Genomic Epidemiological Study of Neisseria gonorrhoeae Strains Spreading Across Sweden in 2016. Front Microbiol. 2022;12:820998.  https://doi.org/10.3389/fmicb.2021.820998  PMID: 35095823 
  22. Igawa G, Yamagishi Y, Lee KI, Dorin M, Shimuta K, Suematsu H, et al. Neisseria cinerea with High Ceftriaxone MIC Is a Source of Ceftriaxone and Cefixime Resistance-Mediating penA Sequences in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2018;62(3):e02069-17.  https://doi.org/10.1128/AAC.02069-17  PMID: 29311079 
  23. Kanesaka I, Ohno A, Katsuse AK, Takahashi H, Kobayashi I. The emergence of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone by transfer of resistance from an oral Neisseria subflava reservoir of resistance. J Antimicrob Chemother. 2022;77(2):364-73.  https://doi.org/10.1093/jac/dkab390  PMID: 34747462 
  24. Unemo M, Lahra MM, Escher M, Eremin S, Cole MJ, Galarza P, et al. WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017-18: a retrospective observational study. Lancet Microbe. 2021;2(11):e627-36.  https://doi.org/10.1016/S2666-5247(21)00171-3  PMID: 35544082 
  25. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters; version 13.0, 1 Jan 2023. Växjö: EUCAST; 2023. Available from: https://www.eucast.org/clinical_breakpoints
  26. Golparian D, Jacobsson S, Sánchez-Busó L, Bazzo ML, Lan PT, Galarza P, et al. GyrB in silico mining in 27 151 global gonococcal genomes from 1928-2021 combined with zoliflodacin in vitro testing of 71 international gonococcal isolates with different GyrB, ParC and ParE substitutions confirms high susceptibility. J Antimicrob Chemother. 2023;78(1):150-4.  https://doi.org/10.1093/jac/dkac366  PMID: 36308328 
/content/10.2807/1560-7917.ES.2023.28.10.2300125
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error