-
Epidemiological and clinical insights from SARS-CoV-2 RT-PCR crossing threshold values, France, January to November 2020
- Samuel Alizon1,2 , Christian Selinger1,* , Mircea T Sofonea1,* , Stéphanie Haim-Boukobza3 , Jean-Marc Giannoli4 , Laetitia Ninove5 , Sylvie Pillet6,7 , Vincent Thibault8 , Alexis de Rougemont9,10 , Camille Tumiotto11 , Morgane Solis12 , Robin Stephan13 , Céline Bressollette-Bodin14 , Maud Salmona15 , Anne-Sophie L’Honneur16 , Sylvie Behillil17 , Caroline Lefeuvre18,19 , Julia Dina20 , Sébastien Hantz21,22 , Cédric Hartard23 , David Veyer24 , Héloïse M Delagrèverie25 , Slim Fourati26 , Benoît Visseaux27 , Cécile Henquell28 , Bruno Lina29 , Vincent Foulongne30 , Sonia Burrel31 , on behalf of the SFM COVID-19 study group32
-
View Affiliations Hide AffiliationsAffiliations: 1 MIVEGEC, CNRS, IRD, Université de Montpellier, France 2 Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France 3 Laboratoire CERBA, Saint-Ouen-L’Aumône, France 4 BIOGROUP, Scientific Direction, Lyon, France 5 Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France 6 Laboratoire des agents infectieux et d’hygiène, CHU de Saint-Etienne, France 7 CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of Saint-Etienne, INSERM, U1111, CNRS UMR5308, ENS de Lyon, UCBL, Lyon, France 8 Laboratoire de Virologie, CHU Rennes, Rennes, France 9 Laboratory of Virology-Serology, University Hospital of Dijon Bourgogne, Dijon, France 10 UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France 11 University of Bordeaux, CNRS-UMR 5234, CHU Bordeaux, Virology Department, Bordeaux, France 12 CHU de Strasbourg, Laboratoire de Virologie, Strasbourg, France, Université de Strasbourg, INSERM, IRM UMR_S 1109, Strasbourg, France 13 Laboratoire de Microbiologie, CHU Nîmes, Nîmes, France 14 CHU Nantes, Nantes Université, Service de Virologie, Nantes, France 15 Laboratoire de Virologie, Hôpital Saint Louis, APHP, INSERM U976, équipe INSIGHT, Université de Paris, Paris, France 16 Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie, Paris, France 17 National Reference Center for Respiratory Viruses, Molecular Genetics of RNA Viruses, UMR 3569 CNRS, University of Paris, Institut Pasteur, Paris, France 18 Département de Biologie des Agents Infectieux, Laboratoire de Virologie, CHU d’Angers, Angers, France 19 Laboratoire HIFIH, UPRES EA 3859, Université d’Angers, Angers, France 20 Laboratoire de Virologie, CHU de Caen, UNICAEN, INSERM U1311 DYNAMICURE, Université de Caen Normandie, Caen, France 21 CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, Limoges, France 22 RESINFIT, U 1092, University of Limoges, Limoges, France 23 Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France; Université de Lorraine, CNRS, LCPME, Nancy, France 24 Laboratoire de Virologie, Service de Microbiologie, hôpital européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris et Unité de Génomique Fonctionnelle des Tumeurs Solides, Centre de Recherche des Cordeliers, INSERM, Université Paris, Paris, France. 25 AP-HP, Hôpital Avicenne, Laboratoire de microbiologie clinique, Bobigny, France 26 Henri Mondor Hospital, virology department, Créteil, France 27 Université de Paris, Inserm, UMR 1137 IAME et Laboratoire de Virologie, Hôpital Bichat Claude Bernard, AP-HP, Paris, France 28 Service de Virologie médicale, 3IHP, CHU Clermont-Ferrand, Clermont-Ferrand, France 29 CNR des virus des infections respiratoires (dont la Grippe), Institut des Agents Infectieux, Hopital de la Croix Rousse, HCL, Lyon, France 30 Pathogenesis and control of chronic and emerging infections, Université de Montpellier, UMR 1058, CHU de Montpellier, Inserm, Université des Antilles, Montpellier, France 31 Sorbonne Université, INSERM U1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris, France 32 French Society of Microbiology (SFM), https://www.sfm-microbiologie.org* These authors contributed equally to this work.Correspondence:Samuel Alizonsamuel.alizon cnrs.fr
-
View Citation Hide Citation
Citation style for this article: Alizon Samuel, Selinger Christian, Sofonea Mircea T, Haim-Boukobza Stéphanie, Giannoli Jean-Marc, Ninove Laetitia, Pillet Sylvie, Thibault Vincent, de Rougemont Alexis, Tumiotto Camille, Solis Morgane, Stephan Robin, Bressollette-Bodin Céline, Salmona Maud, L’Honneur Anne-Sophie, Behillil Sylvie, Lefeuvre Caroline, Dina Julia, Hantz Sébastien, Hartard Cédric, Veyer David, Delagrèverie Héloïse M, Fourati Slim, Visseaux Benoît, Henquell Cécile, Lina Bruno, Foulongne Vincent, Burrel Sonia, on behalf of the SFM COVID-19 study group. Epidemiological and clinical insights from SARS-CoV-2 RT-PCR crossing threshold values, France, January to November 2020. Euro Surveill. 2022;27(6):pii=2100406. https://doi.org/10.2807/1560-7917.ES.2022.27.6.2100406 Received: 31 Mar 2021; Accepted: 15 Oct 2021
Abstract
The COVID-19 pandemic has led to an unprecedented daily use of RT-PCR tests. These tests are interpreted qualitatively for diagnosis, and the relevance of the test result intensity, i.e. the number of quantification cycles (Cq), is debated because of strong potential biases.
We explored the possibility to use Cq values from SARS-CoV-2 screening tests to better understand the spread of an epidemic and to better understand the biology of the infection.
We used linear regression models to analyse a large database of 793,479 Cq values from tests performed on more than 2 million samples between 21 January and 30 November 2020, i.e. the first two pandemic waves. We performed time series analysis using autoregressive integrated moving average (ARIMA) models to estimate whether Cq data information improves short-term predictions of epidemiological dynamics.
Although we found that the Cq values varied depending on the testing laboratory or the assay used, we detected strong significant trends associated with patient age, number of days after symptoms onset or the state of the epidemic (the temporal reproduction number) at the time of the test. Furthermore, knowing the quartiles of the Cq distribution greatly reduced the error in predicting the temporal reproduction number of the COVID-19 epidemic.
Our results suggest that Cq values of screening tests performed in the general population generate testable hypotheses and help improve short-term predictions for epidemic surveillance.
Article metrics loading...
Full text loading...
References
-
Hasell J, Mathieu E, Beltekian D, Macdonald B, Giattino C, Ortiz-Ospina E, et al. A cross-country database of COVID-19 testing. Sci Data. 2020;7(1):345. https://doi.org/10.1038/s41597-020-00688-8 PMID: 33033256
-
He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-5. https://doi.org/10.1038/s41591-020-0869-5 PMID: 32296168
-
Néant N, Lingas G, Le Hingrat Q, Ghosn J, Engelmann I, Lepiller Q, et al. Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort. Proc Natl Acad Sci USA. 2021;118(8):e2017962118. https://doi.org/10.1073/pnas.2017962118 PMID: 33536313
-
Michalakis Y, Sofonea MT, Alizon S, Bravo IG. SARS-CoV-2 viral RNA levels are not ‘viral load’. Trends Microbiol. 2021;29(11):970-2. https://doi.org/10.1016/j.tim.2021.08.008 PMID: 34535373
-
French Microbiology Society (SFM). Avis du 25 septembre 2020 de la Société Française de Microbiologie (SFM) relatif à l’interprétation de la valeur de Ct (estimation de la charge virale) obtenue en cas de RT-PCR SARS-CoV-2 positive sur les prélèvements cliniques réalisés à des fins diagnostiques ou de dépistage. [Opinion on 25 September 2020 of the French Society of Microbiology (SFM) relating to the interpretation of the Ct value (estimate of the viral load) obtained in the event of a positive SARS-CoV-2 RT-PCR on clinical samples taken for diagnostic or screening purposes]. Paris: SFM; 2021. French. Available from: https://www.sfm-microbiologie.org/wp-content/uploads/2021/01/Avis-SFM-valeur-Ct-excre%CC%81tion-virale-_-Version-def-14012021_V4.pdf
-
Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505-12. https://doi.org/10.1093/aje/kwt133 PMID: 24043437
-
Thompson RN, Stockwin JE, van Gaalen RD, Polonsky JA, Kamvar ZN, Demarsh PA, et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics. 2019;29:100356. https://doi.org/10.1016/j.epidem.2019.100356 PMID: 31624039
-
Caswell H. Matrix population models: construction, analysis and interpretation. Sunderland: Sinauer Associates, Inc.; 1989.
-
Hay JA, Kennedy-Shaffer L, Kanjilal S, Lennon NJ, Gabriel SB, Lipsitch M, et al. Estimating epidemiologic dynamics from cross-sectional viral load distributions. Science. 2021;373(6552):eabh0635. https://doi.org/10.1126/science.abh0635 PMID: 34083451
-
Sofonea MT, Reyné B, Elie B, Djidjou-Demasse R, Selinger C, Michalakis Y, et al. Memory is key in capturing COVID-19 epidemiological dynamics. Epidemics. 2021;35:100459. https://doi.org/10.1016/j.epidem.2021.100459 PMID: 34015676
-
Salje H, Tran Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369(6500):208-11. https://doi.org/10.1126/science.abc3517 PMID: 32404476
-
Walker AS, Pritchard E, House T, Robotham JV, Birrell PJ, Bell I, et al. Ct threshold values, a proxy for viral load in community SARS-CoV-2 cases, demonstrate wide variation across populations and over time. eLife. 2021;10:e64683. https://doi.org/10.7554/eLife.64683 PMID: 34250907
-
Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, et al. The coding capacity of SARS-CoV-2. Nature. 2021;589(7840):125-30. https://doi.org/10.1038/s41586-020-2739-1 PMID: 32906143
-
Yang Y, Zhao Y, Zhang F, Zhang L, Li L. COVID-19 in elderly adults: clinical features, molecular mechanisms, and proposed strategies. Aging Dis. 2020;11(6):1481-95. https://doi.org/10.14336/AD.2020.0903 PMID: 33269102
-
Euser S, Aronson S. Manders, I Lelyveld Sv, Herpers B, Sinnige J, et al. SARS-CoV-2 viral load distribution reveals that viral loads increase with age: a retrospective cross-sectional cohort study. medRxiv. 2021.01.15.21249691. preprint. https://doi.org/10.1101/2021.01.15.21249691 https://doi.org/10.1101/2021.01.15.21249691
-
Jones TC, Mühlemann B, Veith T, Biele G, Zuchowski M, Hofmann J, et al. An analysis of SARS-CoV-2 viral load by patient age. medRxiv. 2020.06.08.20125484. preprint. https://doi.org/10.1101/2020.06.08.20125484 https://doi.org/10.1101/2020.06.08.20125484
-
Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, Limpens RWAL, van der Meer Y, Caly L, et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J Gen Virol. 2020;101(9):925-40. https://doi.org/10.1099/jgv.0.001453 PMID: 32568027
-
Dearlove B, Lewitus E, Bai H, Li Y, Reeves DB, Joyce MG, et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants. Proc Natl Acad Sci USA. 2020;117(38):23652-62. https://doi.org/10.1073/pnas.2008281117 PMID: 32868447
-
Haim-Boukobza S, Roquebert B, Trombert-Paolantoni S, Lecorche E, Verdurme L, Foulongne V, et al. Detecting Rapid Spread of SARS-CoV-2 Variants, France, January 26-February 16, 2021. Emerg Infect Dis. 2021;27(5):1496-9. https://doi.org/10.3201/eid2705.210397 PMID: 33769253
-
Alizon S, Haim-Boukobza S, Foulongne V, Verdurme L, Trombert-Paolantoni S, Lecorche E, et al. Rapid spread of the SARS-CoV-2 Delta variant in some French regions, June 2021. Euro Surveill. 2021;26(28):2100573. https://doi.org/10.2807/1560-7917.ES.2021.26.28.2100573 PMID: 34269174
-
Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH, et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021;593(7858):270-4. https://doi.org/10.1038/s41586-021-03426-1 PMID: 33723411
-
Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021;372(6544):815-21. https://doi.org/10.1126/science.abh2644 PMID: 33853970
-
Roquebert B, Haim-Boukobza S, Trombert-Paolantoni S, Lecorche E, Verdurme L, Foulongne V, et al. SARS-CoV-2 variants of concern are associated with lower RT-PCR amplification cycles between January and March 2021 in France. medRxiv. 2021.03.19.21253971. preprint. https://doi.org/10.1101/2021.03.19.21253971 https://doi.org/10.1101/2021.03.19.21253971
-
Brown CM, Vostok J, Johnson H, Burns M, Gharpure R, Sami S, et al. Outbreak of SARS-CoV-2 infections, including COVID-19 vaccine breakthrough infections, associated with large public gatherings - Barnstable County, Massachusetts, July 2021. MMWR Morb Mortal Wkly Rep. 2021;70(31):1059-62. https://doi.org/10.15585/mmwr.mm7031e2 PMID: 34351882
-
Blanquart F, Abad C, Ambroise J, Bernard M, Cosentino G, Giannoli J-M, et al. Characterisation of vaccine breakthrough infections of SARS-CoV-2 Delta and Alpha variants and within-host viral load dynamics in the community, France, June to July 2021. Euro Surveill. 2021;26(37):2100824. https://doi.org/10.2807/1560-7917.ES.2021.26.37.2100824 PMID: 34533119
-
Kraemer MUG, Hill V, Ruis C, Dellicour S, Bajaj S, McCrone JT, et al. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Science. 2021;373(6557):889-95. https://doi.org/10.1126/science.abj0113 PMID: 34301854
-
Pullano G, Di Domenico L, Sabbatini CE, Valdano E, Turbelin C, Debin M, et al. Underdetection of cases of COVID-19 in France threatens epidemic control. Nature. 2021;590(7844):134-9. https://doi.org/10.1038/s41586-020-03095-6 PMID: 33348340
-
Selinger C, Choisy M, Alizon S. Predicting COVID-19 incidence in French hospitals using human contact network analytics. Int J Infect Dis. 2021;111:100-7. https://doi.org/10.1016/j.ijid.2021.08.029 PMID: 34403783
Data & Media loading...
Supplementary data
-
-
Supplement
-