1887
Rapid communication Open Access
Like 0

Abstract

The SARS-CoV-2 Lambda (Pango lineage designation C.37) variant of interest, initially identified in Peru, has spread to additional countries. First detected in Israel in April 2021 following importations from Argentina and several European countries, the Lambda variant infected 18 individuals belonging to two main transmission chains without further spread. Micro-neutralisation assays following Comirnaty (BNT162b2 mRNA, BioNTech-Pfizer) vaccination demonstrated a significant 1.6-fold reduction in neutralising titres compared with the wild type virus, suggesting increased susceptibility of vaccinated individuals to infection.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2021.26.45.2100974
2021-11-11
2025-01-20
/content/10.2807/1560-7917.ES.2021.26.45.2100974
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/26/45/eurosurv-26-45-2.html?itemId=/content/10.2807/1560-7917.ES.2021.26.45.2100974&mimeType=html&fmt=ahah

References

  1. Romero PE, Dávila-Barclay A, Salvatierra G, González L, Cuicapuza D, Solís L, et al. The emergence of Sars-CoV-2 variant Lambda (C.37) in South America. Microbiol Spectr. 2021;9(2):e0078921.  https://doi.org/10.1128/Spectrum.00789-21  PMID: 34704780 
  2. Haendel MA, Chute CG, Bennett TD, Eichmann DA, Guinney J, Kibbe WA, et al. The National COVID Cohort Collaborative (N3C): rationale, design, infrastructure, and deployment. J Am Med Inform Assoc. 2021;28(3):427-43.  https://doi.org/10.1093/jamia/ocaa196  PMID: 32805036 
  3. Padilla-Rojas C, Jimenez-Vasquez V, Hurtado V, Mestanza O, Molina IS, Barcena L, et al. Genomic analysis reveals a rapid spread and predominance of lambda (C.37) SARS-COV-2 lineage in Peru despite circulation of variants of concern. J Med Virol. 2021;93(12):6845-9.  https://doi.org/10.1002/jmv.27261  PMID: 34370324 
  4. Mohammadi M, Shayestehpour M, Mirzaei H. The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Braz J Infect Dis. 2021;25(4):101606.  https://doi.org/10.1016/j.bjid.2021.101606  PMID: 34428473 
  5. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121-3.  https://doi.org/10.1093/bioinformatics/bty407  PMID: 29790939 
  6. Lustig Y, Zuckerman N, Nemet I, Atari N, Kliker L, Regev-Yochay G, et al. Neutralising capacity against Delta (B.1.617.2) and other variants of concern following Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in health care workers, Israel. Euro Surveill. 2021;26(26):2100557.  https://doi.org/10.2807/1560-7917.ES.2021.26.26.2100557  PMID: 34212838 
  7. World Health Organization (WHO). Tracking SARS-CoV-2 variants. Geneva: WHO. [Accessed: 1 Sep 2021]. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants
  8. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021;397(10287):1819-29.  https://doi.org/10.1016/S0140-6736(21)00947-8  PMID: 33964222 
  9. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021;384(15):1412-23.  https://doi.org/10.1056/NEJMoa2101765  PMID: 33626250 
  10. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383(27):2603-15.  https://doi.org/10.1056/NEJMoa2034577  PMID: 33301246 
  11. Israel Ministry of Health. COVID-19 dashboard. Jerusalem: Israel Ministry of Health. [Accessed: 1 Sep 2021]. Available from: https://datadashboard.health.gov.il/COVID-19/general
  12. Lustig Y, Nemet I, Kliker L, Zuckerman N, Yishai R, Alroy-Preis S, et al. Neutralizing response against variants after SARS-CoV-2 infection and one dose of BNT162b2. N Engl J Med. 2021;384(25):2453-4.  https://doi.org/10.1056/NEJMc2104036  PMID: 33826815 
  13. Liu Y, Liu J, Xia H, Zhang X, Zou J, Fontes-Garfias CR, et al. BNT162b2-elicited neutralization against new SARS-CoV-2 spike variants. N Engl J Med. 2021;385(5):472-4.  https://doi.org/10.1056/NEJMc2106083  PMID: 33979486 
  14. Miyakawa K, Jeremiah SS, Kato H, Ryo A. Neutralizing efficacy of vaccines against the SARS-CoV-2 Mu variant. medRxiv. 2021:2021.09.23.21264014. Preprint. https://doi.org/ https://doi.org/10.1101/2021.09.23.21264014 
  15. Fernández J, Bruneau N, Fasce R, Martín HS, Balanda M, Bustos P, et al. Neutralization of alpha, gamma, and D614G SARS-CoV-2 variants by CoronaVac vaccine-induced antibodies. J Med Virol. 2021. Epub ahead of print.  https://doi.org/10.1002/jmv.27310  PMID: 34460119 
  16. Dejnirattisai W, Zhou D, Supasa P, Liu C, Mentzer AJ, Ginn HM, et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. 2021;184(11):2939-2954.e9.  https://doi.org/10.1016/j.cell.2021.03.055  PMID: 33852911 
  17. Tegally H, Wilkinson E, Althaus CL, Giovanetti M, San JE, Giandhari J, et al. Rapid replacement of the beta variant by the delta variant in South Africa. medRxiv. 2021:2021.09.23.21264018. Preprint. https://doi.org/ https://doi.org/10.1101/2021.09.23.21264018 
  18. Li B, Deng A, Li K, Hu Y, Li Z, Xiong Q, et al. Viral infection and transmission in a large well-traced outbreak caused by the delta SARS-CoV-2 variant. medRxiv. 2021:2021.07.07.21260122. Preprint. https://doi.org/ https://doi.org/10.1101/2021.07.07.21260122 
/content/10.2807/1560-7917.ES.2021.26.45.2100974
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error