1887
Research Open Access
Like 0

Abstract

Background

In 2016, an uncommon outbreak of oropharyngeal tularaemia involving six human cases occurred in Germany, caused by drinking contaminated fresh must after a grape harvest.

Aim

We describe the details of laboratory investigations leading to identification of the outbreak strain, its characterisation by next generation sequencing (NGS) and the finding of the possible source of contamination.

Methods

We incubated wine samples in different media and on agar plates. NGS was performed on DNA isolated from young wine, sweet reserve and an outbreak case’s lymph node. A draft genome of the outbreak strain was generated. Vertebrate-specific PCRs using primers targeting the mitochondrial cytochrome b gene and product analyses by blast search were used to identify the putative source of must contamination.

Results

No bacterial isolate could be obtained. Analysis of the draft genome sequence obtained from the sweet reserve attributed this sequence to subsp. , belonging to the B.12/B.34 phylogenetic clade (erythromycin-resistant biovar II). In addition, the DNA sequence obtained from the case’s isolate supported our hypothesis that infection was caused by drinking contaminated must. The vertebrate-specific cytochrome b sequence derived from the young wine and the sweet reserve could be assigned to (wood mouse), suggesting that a wood mouse infected with may have contaminated the must.

Conclusion

The discovered source of infection and the transmission scenario of in this outbreak have not been observed previously and suggest the need for additional hygienic precautionary measures when processing and consuming freshly pressed must.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.18.1800419
2019-05-02
2025-01-10
/content/10.2807/1560-7917.ES.2019.24.18.1800419
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/18/eurosurv-24-18-4.html?itemId=/content/10.2807/1560-7917.ES.2019.24.18.1800419&mimeType=html&fmt=ahah

References

  1. Ellis J, Oyston PC, Green M, Titball RW. Tularemia. Clin Microbiol Rev. 2002;15(4):631-46.  https://doi.org/10.1128/CMR.15.4.631-646.2002  PMID: 12364373 
  2. Sjöstedt A. Special Topic on Francisella tularensis and Tularemia. Front Microbiol. 2011;2:86.  https://doi.org/10.3389/fmicb.2011.00086  PMID: 21833327 
  3. Foley JE, Nieto NC. Tularemia. Vet Microbiol. 2010;140(3-4):332-8.  https://doi.org/10.1016/j.vetmic.2009.07.017  PMID: 19713053 
  4. Santic M, Al-Khodor S, Abu Kwaik Y. Cell biology and molecular ecology of Francisella tularensis. Cell Microbiol. 2010;12(2):129-39.  https://doi.org/10.1111/j.1462-5822.2009.01400.x  PMID: 19863554 
  5. Hestvik G, Warns-Petit E, Smith LA, Fox NJ, Uhlhorn H, Artois M, et al. The status of tularemia in Europe in a one-health context: a review. Epidemiol Infect. 2015;143(10):2137-60.  https://doi.org/10.1017/S0950268814002398  PMID: 25266682 
  6. Maurin M, Gyuranecz M. Tularaemia: clinical aspects in Europe. Lancet Infect Dis. 2016;16(1):113-24.  https://doi.org/10.1016/S1473-3099(15)00355-2  PMID: 26738841 
  7. Faber M, Heuner K, Jacob D, Grunow R. Tularemia in Germany-A Re-emerging Zoonosis. Front Cell Infect Microbiol. 2018;8:40.  https://doi.org/10.3389/fcimb.2018.00040  PMID: 29503812 
  8. Gehringer H, Schacht E, Maylaender N, Zeman E, Kaysser P, Oehme R, et al. Presence of an emerging subclone of Francisella tularensis holarctica in Ixodes ricinus ticks from south-western Germany. Ticks Tick Borne Dis. 2013;4(1-2):93-100.  https://doi.org/10.1016/j.ttbdis.2012.09.001  PMID: 23141103 
  9. Jenzora A, Jansen A, Ranisch H, Lierz M, Wichmann O, Grunow R. Seroprevalence study of Francisella tularensis among hunters in Germany. FEMS Immunol Med Microbiol. 2008;53(2):183-9.  https://doi.org/10.1111/j.1574-695X.2008.00408.x  PMID: 18462387 
  10. Kaysser P, Seibold E, Mätz-Rensing K, Pfeffer M, Essbauer S, Splettstoesser WD. Re-emergence of tularemia in Germany: presence of Francisella tularensis in different rodent species in endemic areas. BMC Infect Dis. 2008;8(1):157.  https://doi.org/10.1186/1471-2334-8-157  PMID: 19014635 
  11. Kuehn A, Schulze C, Kutzer P, Probst C, Hlinak A, Ochs A, et al. Tularaemia seroprevalence of captured and wild animals in Germany: the fox (Vulpes vulpes) as a biological indicator. Epidemiol Infect. 2013;141(4):833-40.  https://doi.org/10.1017/S0950268812001008  PMID: 22800496 
  12. Müller W, Hotzel H, Otto P, Karger A, Bettin B, Bocklisch H, et al. German Francisella tularensis isolates from European brown hares (Lepus europaeus) reveal genetic and phenotypic diversity. BMC Microbiol. 2013;13(1):61.  https://doi.org/10.1186/1471-2180-13-61  PMID: 23517149 
  13. Otto P, Chaignat V, Klimpel D, Diller R, Melzer F, Müller W, et al. Serological investigation of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicator animals for circulation of Francisella tularensis in Germany. Vector Borne Zoonotic Dis. 2014;14(1):46-51.  https://doi.org/10.1089/vbz.2013.1321  PMID: 24359418 
  14. Splettstoesser WD, Piechotowski I, Buckendahl A, Frangoulidis D, Kaysser P, Kratzer W, et al. Tularemia in Germany: the tip of the iceberg? Epidemiol Infect. 2009;137(5):736-43.  https://doi.org/10.1017/S0950268808001192  PMID: 18808726 
  15. Rydzewski K, Schulz T, Brzuszkiewicz E, Holland G, Lück C, Fleischer J, et al. Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol. 2014;14(1):169.  https://doi.org/10.1186/1471-2180-14-169  PMID: 24961323 
  16. Burckhardt F, Hoffmann D, Jahn K, Heuner K, Jacob D, Vogt M, et al. Oropharyngeal Tularemia from Freshly Pressed Grape Must. N Engl J Med. 2018;379(2):197-9.  https://doi.org/10.1056/NEJMc1800353  PMID: 29996079 
  17. Kirchner S, Krämer KM, Schulze M, Pauly D, Jacob D, Gessler F, et al. Pentaplexed quantitative real-time PCR assay for the simultaneous detection and quantification of botulinum neurotoxin-producing clostridia in food and clinical samples. Appl Environ Microbiol. 2010;76(13):4387-95.  https://doi.org/10.1128/AEM.02490-09  PMID: 20435756 
  18. Broekhuijsen M, Larsson P, Johansson A, Byström M, Eriksson U, Larsson E, et al. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J Clin Microbiol. 2003;41(7):2924-31.  https://doi.org/10.1128/JCM.41.7.2924-2931.2003  PMID: 12843022 
  19. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20.  https://doi.org/10.1093/bioinformatics/btu170  PMID: 24695404 
  20. Andrews S. FastQC: a quality control tool for high throughput sequence data. Version 0.11.5. 2010. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  21. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9.  https://doi.org/10.1038/nmeth.1923  PMID: 22388286 
  22. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46.  https://doi.org/10.1186/gb-2014-15-3-r46  PMID: 24580807 
  23. Ondov BD, Bergman NH, Philippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011;12(1):385.
  24. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-9.  https://doi.org/10.1093/bioinformatics/bts199  PMID: 22543367 
  25. Karlsson E, Svensson K, Lindgren P, Byström M, Sjödin A, Forsman M, et al. The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia. Environ Microbiol. 2013;15(2):634-45.  https://doi.org/10.1111/1462-2920.12052  PMID: 23253075 
  26. Schulze C, Heuner K, Myrtennäs K, Karlsson E, Jacob D, Kutzer P, et al. High and novel genetic diversity of Francisella tularensis in Germany and indication of environmental persistence. Epidemiol Infect. 2016;144(14):3025-36.  https://doi.org/10.1017/S0950268816001175  PMID: 27356883 
  27. Svensson K, Granberg M, Karlsson L, Neubauerova V, Forsman M, Johansson A. A real-time PCR array for hierarchical identification of Francisella isolates. PLoS One. 2009;4(12):e8360.  https://doi.org/10.1371/journal.pone.0008360  PMID: 20027310 
  28. Kent RJ, Norris DE. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am J Trop Med Hyg. 2005;73(2):336-42.  https://doi.org/10.4269/ajtmh.2005.73.336  PMID: 16103600 
  29. Karlsson E, Golovliov I, Lärkeryd A, Granberg M, Larsson E, Öhrman C, et al. Clonality of erythromycin resistance in Francisella tularensis. J Antimicrob Chemother. 2016;71(10):2815-23.  https://doi.org/10.1093/jac/dkw235  PMID: 27334667 
  30. Irwin DM, Kocher TD, Wilson AC. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991;32(2):128-44.  https://doi.org/10.1007/BF02515385  PMID: 1901092 
  31. Lopes de Carvalho I, Toledo A, Carvalho CL, Barandika JF, Respicio-Kingry LB, Garcia-Amil C, et al. Francisella species in ticks and animals, Iberian Peninsula. Ticks Tick Borne Dis. 2016;7(1):159-65.  https://doi.org/10.1016/j.ttbdis.2015.10.009  PMID: 26520052 
  32. Gyuranecz M, Rigó K, Dán A, Földvári G, Makrai L, Dénes B, et al. Investigation of the ecology of Francisella tularensis during an inter-epizootic period. Vector Borne Zoonotic Dis. 2011;11(8):1031-5.  https://doi.org/10.1089/vbz.2010.0091  PMID: 21142970 
  33. Tadin A, Tokarz R, Markotić A, Margaletić J, Turk N, Habuš J, et al. Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia. Am J Trop Med Hyg. 2016;94(2):466-73.  https://doi.org/10.4269/ajtmh.15-0517  PMID: 26711522 
  34. Rebschutz- und Weinbauinformationsdienst Pfalz. [Information service for vine protection and viniculture in the Palatinate]. Mitteilung Nr. 24 vom 8. August 2017. [Information no. 24 from 8 august 2017]. Neustadt an der Weinstraße: Institut für Phytomedizin; 2017. German. Available from: https://www.dlr.rlp.de/Internet/global/themen.nsf/Web_P_WB_Rebschutz_XP/608CB8248C8B0E6BC1258176005348DC/$FILE/24_2017.pdf
/content/10.2807/1560-7917.ES.2019.24.18.1800419
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error