1887
Research Open Access
Like 0

Abstract

Background

Infectiousness of respiratory viral infections is quantified as plaque forming units (PFU), requiring resource-intensive viral culture that is not routinely performed. We hypothesised that RNA viral load (VL) decline time (e-folding time) in people might serve as an alternative marker of infectiousness.

Aim

This study’s objective was to evaluate the association of RNAVL decline time with RNA and PFUVL area under the curve (AUC) and transmission risk for SARS-CoV-2 and influenza A virus.

Methods

In SARS-CoV-2 and influenza A virus community cohorts, viral RNA was quantified by reverse transcription quantitative PCR in serial upper respiratory tract (URT)-samples collected within households after an initial household-member tested positive for one virus. We evaluated correlations between RNAVL decline time and RNA and PFU-VL AUC. Associations between VL decline time and transmission risk in index-contact pairs were assessed.

Results

In SARS-CoV-2 cases, we observed positive correlations between RNAVL decline time and RNA and PFUVL AUC with posterior probabilities 1 and 0.96 respectively. In influenza A cases a positive correlation between RNAVL decline time and RNAVL AUC was observed, with posterior probability of 0.87. Index case VL decline times one standard deviation above the cohort-mean showed a relative increase in secondary attack rates of 39% (95%credible interval (CrI):−6.9to95%) for SARS-CoV-2 and 25% (95% CrI:−11 to 71%) for influenza A virus.

Conclusion

We identify VL decline time as a potential marker of infectiousness and transmission risk for SARS-CoV-2 and influenza A virus. Early ascertainment of VL kinetics as part of surveillance of new viruses or variants could inform public health decision making.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.6.2400234
2025-02-13
2025-03-19
/content/10.2807/1560-7917.ES.2025.30.6.2400234
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/6/eurosurv-30-6-5.html?itemId=/content/10.2807/1560-7917.ES.2025.30.6.2400234&mimeType=html&fmt=ahah

References

  1. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol. 2008;167(7):775-85.  https://doi.org/10.1093/aje/kwm375  PMID: 18230677 
  2. Kennedy-Shaffer L, Kahn R, Lipsitch M. Estimating Vaccine Efficacy Against Transmission via Effect on Viral Load. Epidemiology. 2021;32(6):820-8.  https://doi.org/10.1097/EDE.0000000000001415  PMID: 34469363 
  3. Watson JA, Kissler SM, Day NPJ, Grad YH, White NJ. Characterizing SARS-CoV-2 Viral Clearance Kinetics to Improve the Design of Antiviral Pharmacometric Studies. Antimicrob Agents Chemother. 2022;66(7):e0019222.  https://doi.org/10.1128/aac.00192-22  PMID: 35736134 
  4. Singanayagam A, Patel M, Charlett A, Lopez Bernal J, Saliba V, Ellis J, et al. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Euro Surveill. 2020;25(32):2001483.  https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001483  PMID: 32794447 
  5. Dabisch PA, Sanjak JS, Boydston JA, Yeager J, Herzog A, Biryukov J, et al. Comparison of Dose-Response Relationships for Two Isolates of SARS-CoV-2 in a Nonhuman Primate Model of Inhalational COVID-19. J Aerosol Med Pulm Drug Deliv. 2022;35(6):296-306.  https://doi.org/10.1089/jamp.2022.0043  PMID: 36318785 
  6. Watson JM, Francis JN, Mesens S, Faiman GA, Makin J, Patriarca P, et al. Characterisation of a wild-type influenza (A/H1N1) virus strain as an experimental challenge agent in humans. Virol J. 2015;12(1):13.  https://doi.org/10.1186/s12985-015-0240-5  PMID: 25645025 
  7. Hakki S, Zhou J, Jonnerby J, Singanayagam A, Barnett JL, Madon KJ, et al. , ATACCC study investigators. Onset and window of SARS-CoV-2 infectiousness and temporal correlation with symptom onset: : a prospective, longitudinal, community cohort study. Lancet Respir Med. 2022;10(11):1061-73.  https://doi.org/10.1016/S2213-2600(22)00226-0  PMID: 35988572 
  8. Singanayagam A, Hakki S, Dunning J, Madon KJ, Crone MA, Koycheva A, et al. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: : a prospective, longitudinal, cohort study. Lancet Infect Dis. 2021;S1473309921006484.  https://doi.org/10.1016/S1473-3099(21)00648-4  PMID: 34756186 
  9. Derqui N, Koycheva A, Zhou J, Pillay TD, Crone MA, Hakki S, et al. , INSTINCT and ATACCC study group. Risk factors and vectors for SARS-CoV-2 household transmission: a prospective, longitudinal cohort study. Lancet Microbe. 2023;4(6):e397-408.  https://doi.org/10.1016/S2666-5247(23)00069-1  PMID: 37031689 
  10. Tsang TK, Fang VJ, Chan K-H, Ip DKM, Leung GM, Peiris JSM, et al. Individual Correlates of Infectivity of Influenza A Virus Infections in Households. PLoS One. 2016;11(5):e0154418.  https://doi.org/10.1371/journal.pone.0154418  PMID: 27153194 
  11. Kundu R, Narean JS, Wang L, Fenn J, Pillay T, Fernandez ND, et al. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat Commun. 2022;13(1):80.  https://doi.org/10.1038/s41467-021-27674-x  PMID: 35013199 
  12. Tsang TK, Cowling BJ, Fang VJ, Chan K-H, Ip DKM, Leung GM, et al. Influenza A Virus Shedding and Infectivity in Households. J Infect Dis. 2015;212(9):1420-8.  https://doi.org/10.1093/infdis/jiv225  PMID: 25883385 
  13. Kissler SM, Hay JA, Fauver JR, Mack C, Tai CG, Anderson DJ, et al. Viral kinetics of sequential SARS-CoV-2 infections. Nat Commun. 2023;14(1):6206.  https://doi.org/10.1038/s41467-023-41941-z  PMID: 37798265 
  14. Tian D, Lin Z, Kriner EM, Esneault DJ, Tran J, DeVoto JC, et al. Ct Values Do Not Predict Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmissibility in College Students. J Mol Diagn. 2021;23(9):1078-84.  https://doi.org/10.1016/j.jmoldx.2021.05.012  PMID: 34102313 
  15. Marks M, Millat-Martinez P, Ouchi D, Roberts CH, Alemany A, Corbacho-Monné M, et al. Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study. Lancet Infect Dis. 2021;21(5):629-36.  https://doi.org/10.1016/S1473-3099(20)30985-3  PMID: 33545090 
  16. Bhavnani D, James ER, Johnson KE, Beaudenon-Huibregtse S, Chang P, Rathouz PJ, et al. SARS-CoV-2 viral load is associated with risk of transmission to household and community contacts. BMC Infect Dis. 2022;22(1):672.  https://doi.org/10.1186/s12879-022-07663-1  PMID: 35931971 
  17. Lee LYW, Rozmanowski S, Pang M, Charlett A, Anderson C, Hughes GJ, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity by Viral Load, S Gene Variants and Demographic Factors, and the Utility of Lateral Flow Devices to Prevent Transmission. Clin Infect Dis. 2022;74(3):407-15.  https://doi.org/10.1093/cid/ciab421  PMID: 33972994 
  18. Mitjà O, Corbacho-Monné M, Ubals M, Alemany A, Suñer C, Tebé C, et al. , BCN-PEP-CoV2 Research Group. A Cluster-Randomized Trial of Hydroxychloroquine for Prevention of Covid-19. N Engl J Med. 2021;384(5):417-27.  https://doi.org/10.1056/NEJMoa2021801  PMID: 33289973 
  19. Petrie JG, Ohmit SE, Cowling BJ, Johnson E, Cross RT, Malosh RE, et al. Influenza transmission in a cohort of households with children: 2010-2011. PLoS One. 2013;8(9):e75339.  https://doi.org/10.1371/journal.pone.0075339  PMID: 24086511 
/content/10.2807/1560-7917.ES.2025.30.6.2400234
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error