1887
Research Open Access
Like 0

Abstract

Background

Tick-borne encephalitis (TBE) can be a severe neurological disease. Identifying ecological factors that may facilitate tick-borne encephalitis virus (TBEV) circulation in the Netherlands could improve awareness and detection.

Aim

We aimed to identify ecological factors affecting TBEV circulation in the Netherlands and to determine if there is sustained circulation and spread of the virus.

Methods

Between June and September 2021, rodents and ticks from three previously TBEV-positive locations were tested for TBEV by PCR. We sequenced TBEV and compared the sequences with previous and subsequent sequences from the Netherlands and other countries to investigate the spread of TBEV-variants.

Results

We captured 383 rodents, 928 feeding ticks and 1,571 questing ticks and detected TBEV from six (three and three ) (2.9%) of 206 tested rodents and two (0.9%) of 215 questing tick pools. Detection of TBEV was associated with questing tick density (Mann–Whitney U test  = 81.5; 95% confidence interval (CI): − 3.7–6.3 × 10−5; p = 0.05). Tick larvae (odds ratio (OR) = 9.0; 95% CI: 2.8–38.2; p < 0.01) and nymphs (OR = 3.8; 95% CI: 1.3–13.6; p < 0.01) were more frequent on than on Sequence comparisons suggest multiple introductions and local circulation of TBEV but no spread among locations.

Conclusion

Tick-borne encephalitis virus occurs in diverse woodlands in the Netherlands, posing a risk to those frequenting these areas. Surveillance for the early detection and monitoring of TBEV spread, along with public awareness campaigns on preventive measures, should continue. Recognition of TBE symptoms and supportive diagnostics should be made available nationwide.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.4.2400247
2025-01-30
2025-01-31
/content/10.2807/1560-7917.ES.2025.30.4.2400247
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/4/eurosurv-30-4-4.html?itemId=/content/10.2807/1560-7917.ES.2025.30.4.2400247&mimeType=html&fmt=ahah

References

  1. Van Heuverswyn J, Hallmaier-Wacker LK, Beauté J, Gomes Dias J, Haussig JM, Busch K, et al. Spatiotemporal spread of tick-borne encephalitis in the EU/EEA, 2012 to 2020. Euro Surveill. 2023;28(11):2200543.  https://doi.org/10.2807/1560-7917.ES.2023.28.11.2200543  PMID: 36927718 
  2. Jenkins VA, Silbernagl G, Baer LR, Hoet B. The epidemiology of infectious diseases in Europe in 2020 versus 2017-2019 and the rise of tick-borne encephalitis (1995-2020). Ticks Tick Borne Dis. 2022;13(5):101972.  https://doi.org/10.1016/j.ttbdis.2022.101972  PMID: 35662067 
  3. Donoso Mantke O, Escadafal C, Niedrig M, Pfeffer M, Working Group For Tick-Borne Encephalitis Virus. Tick-borne encephalitis in Europe, 2007 to 2009. Euro Surveill. 2011;16(39):19976.  https://doi.org/10.2807/ese.16.39.19976-en  PMID: 21968423 
  4. Jahfari S, de Vries A, Rijks JM, Van Gucht S, Vennema H, Sprong H, et al. Tick-borne encephalitis virus in ticks and roe deer, the Netherlands. Emerg Infect Dis. 2017;23(6):1028-30.  https://doi.org/10.3201/eid2306.161247  PMID: 28518024 
  5. Erber W, Broeker M, Dobler G, Chitimia-Dobler L, Schmitt HJ. Epidemiology of TBE. In: Dobler G, Erber W, Bröker M, Chitimia-Dobler L, Schmitt HJ (editors). The TBE Book. 7th edition. Chapter 12. Singapore: Global Health Press; 2024. Available from: https://tbenews.com/tbe/
  6. Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, et al. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors. 2019;12(1):265.  https://doi.org/10.1186/s13071-019-3515-7  PMID: 31133059 
  7. Randolph SE, Rogers DJ. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc Biol Sci. 2000;267(1454):1741-4.  https://doi.org/10.1098/rspb.2000.1204  PMID: 12233771 
  8. Randolph SE. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos Trans R Soc Lond B Biol Sci. 2001;356(1411):1045-56.  https://doi.org/10.1098/rstb.2001.0893  PMID: 11516382 
  9. Esser HJ, Lim SM, de Vries A, Sprong H, Dekker DJ, Pascoe EL, et al. Continued circulation of tick-borne encephalitis virus variants and detection of novel transmission foci, the Netherlands. Emerg Infect Dis. 2022;28(12):2416-24.  https://doi.org/10.3201/eid2812.220552  PMID: 36288572 
  10. de Graaf JA, Reimerink JHJ, Voorn GP, Bij de Vaate EA, de Vries A, Rockx B, et al. First human case of tick-borne encephalitis virus infection acquired in the Netherlands, July 2016. Euro Surveill. 2016;21(33):30318.  https://doi.org/10.2807/1560-7917.ES.2016.21.33.30318  PMID: 27562931 
  11. van Heusden HC, Voet W, Sprong H, Brandwagt DAH, Thijsen SFT. Teken-encefalitis in Nederland. [Tick-borne encephalitis in the Netherlands]. Dutch. Ned Tijdschr Geneeskd. 2020;164:D4068. PMID: 32267637 
  12. Pascoe EL, de Vries A, Esser HJ, Koenraadt CJM, Sprong H. Detection of tick-borne encephalitis virus in ear tissue and dried blood spots from naturally infected wild rodents. Parasit Vectors. 2023;16(1):103.  https://doi.org/10.1186/s13071-023-05717-0  PMID: 36927723 
  13. Kupča AM, Essbauer S, Zoeller G, de Mendonça PG, Brey R, Rinder M, et al. Isolation and molecular characterization of a tick-borne encephalitis virus strain from a new tick-borne encephalitis focus with severe cases in Bavaria, Germany. Ticks Tick Borne Dis. 2010;1(1):44-51.  https://doi.org/10.1016/j.ttbdis.2009.11.002  PMID: 21771510 
  14. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-7.  https://doi.org/10.1093/nar/gkh340  PMID: 15034147 
  15. Nei M, Kumar S. Molecular Evolution and Phylogenetics. Oxford: Oxford University Press; 2000. p. 352.
  16. Heip C. A new index measuring evenness. J Mar Biol Assoc U K. 1974;54(3):555-7.  https://doi.org/10.1017/S0025315400022736 
  17. Jahfari S, Coipan EC, Fonville M, van Leeuwen AD, Hengeveld P, Heylen D, et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors. 2014;7(1):365.  https://doi.org/10.1186/1756-3305-7-365  PMID: 25127547 
  18. Close DB, Robbins AD, Rubin PH, Stallman R, van Oostrum P. The AWK Manual. Cambridge: Free Software Foundation, Inc. Dec 1995. p. 136. Available from: https://www.cs.unibo.it/~renzo/doc/awk/nawkA4.pdf
  19. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150-2.  https://doi.org/10.1093/bioinformatics/bts565  PMID: 23060610 
  20. R Core Team. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2023. Available from: https://www.R-project.org/
  21. Labuda M, Nuttall PA, Kožuch O, Elecková E, Williams T, Zuffová E, et al. Non-viraemic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature. Experientia. 1993;49(9):802-5.  https://doi.org/10.1007/BF01923553  PMID: 8405306 
  22. Rehácek J. Transovarial transmission of tick-borne encephalitis virus by ticks. Acta Virol. 1962;6(3):220-6. PMID: 14038646 
  23. Danielová V, Holubová J, Pejcoch M, Daniel M. Potential significance of transovarial transmission in the circulation of tick-borne encephalitis virus. Folia Parasitol (Praha). 2002;49(4):323-5.  https://doi.org/10.14411/fp.2002.060  PMID: 12641208 
  24. Michelitsch A, Fast C, Sick F, Tews BA, Stiasny K, Bestehorn-Willmann M, et al. Long-term presence of tick-borne encephalitis virus in experimentally infected bank voles (Myodes glareolus). Ticks Tick Borne Dis. 2021;12(4):101693.  https://doi.org/10.1016/j.ttbdis.2021.101693  PMID: 33690089 
  25. Zöldi V, Papp T, Reiczigel J, Egyed L. Bank voles show high seropositivity rates in a natural TBEV focus in Hungary. Infect Dis (Lond). 2015;47(3):178-81.  https://doi.org/10.3109/00365548.2014.975743  PMID: 25549698 
  26. Tonteri E, Kipar A, Voutilainen L, Vene S, Vaheri A, Vapalahti O, et al. The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (Myodes glareolus). PLoS One. 2013;8(12):e81214.  https://doi.org/10.1371/journal.pone.0081214  PMID: 24349041 
  27. Labuda M, Kozuch O, Zuffová E, Elecková E, Hails RS, Nuttall PA. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology. 1997;235(1):138-43.  https://doi.org/10.1006/viro.1997.8622  PMID: 9300045 
  28. Brandenburg PJ, Obiegala A, Schmuck HM, Dobler G, Chitimia-Dobler L, Pfeffer M. Seroprevalence of tick-borne encephalitis (TBE) virus antibodies in wild rodents from two natural TBE foci in Bavaria, Germany. Pathogens. 2023;12(2):185.  https://doi.org/10.3390/pathogens12020185  PMID: 36839457 
  29. Daniel M, Kolár J, Zeman P, Pavelka K, Sádlo J. Predictive map of Ixodes ricinus high-incidence habitats and a tick-borne encephalitis risk assessment using satellite data. Exp Appl Acarol. 1998;22(7):417-33.  https://doi.org/10.1023/A:1006030827216  PMID: 9680691 
  30. Kiffner C, Zucchini W, Schomaker P, Vor T, Hagedorn P, Niedrig M, et al. Determinants of tick-borne encephalitis in counties of southern Germany, 2001-2008. Int J Health Geogr. 2010;9(1):42.  https://doi.org/10.1186/1476-072X-9-42  PMID: 20707897 
  31. Biernat B, Karbowiak G, Werszko J, Stańczak J. Prevalence of tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks from natural and urban environment, Poland. Exp Appl Acarol. 2014;64(4):543-51.  https://doi.org/10.1007/s10493-014-9836-5  PMID: 25047961 
  32. Rosà R, Tagliapietra V, Manica M, Arnoldi D, Hauffe HC, Rossi C, et al. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Int J Parasitol. 2019;49(10):779-87.  https://doi.org/10.1016/j.ijpara.2019.05.006  PMID: 31348960 
  33. Zeman P, Bene C. A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: possible impact of global warming? Int J Med Microbiol. 2004;293(Suppl 37):48-54. PMID: 15146984 
  34. Rizzoli A, Hauffe HC, Tagliapietra V, Neteler M, Rosà R. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS One. 2009;4(2):e4336.  https://doi.org/10.1371/journal.pone.0004336  PMID: 19183811 
  35. Hartemink N, van Vliet A, Sprong H, Jacobs F, Garcia-Martí I, Zurita-Milla R, et al. Temporal-spatial variation in questing tick activity in the Netherlands: the effect of climatic and habitat factors. Vector Borne Zoonotic Dis. 2019;19(7):494-505.  https://doi.org/10.1089/vbz.2018.2369  PMID: 30810501 
  36. Lommano E, Burri C, Maeder G, Guerne M, Bastic V, Patalas E, et al. Prevalence and genotyping of tick-borne encephalitis virus in questing Ixodes ricinus ticks in a new endemic area in western Switzerland. J Med Entomol. 2012;49(1):156-64.  https://doi.org/10.1603/ME11044  PMID: 22308784 
  37. Hasle G. Transport of ixodid ticks and tick-borne pathogens by migratory birds. Front Cell Infect Microbiol. 2013;3:48.  https://doi.org/10.3389/fcimb.2013.00048  PMID: 24058903 
  38. Deviatkin AA, Kholodilov IS, Belova OA, Bugmyrin SV, Bespyatova LA, Ivannikova AY, et al. Baltic group tick-borne encephalitis virus phylogeography: systemic inconsistency pattern between genetic and geographic distances. Microorganisms. 2020;8(10):1589.  https://doi.org/10.3390/microorganisms8101589  PMID: 33076346 
  39. Uzcátegui NY, Sironen T, Golovljova I, Jääskeläinen AE, Välimaa H, Lundkvist Å, et al. Rate of evolution and molecular epidemiology of tick-borne encephalitis virus in Europe, including two isolations from the same focus 44 years apart. J Gen Virol. 2012;93(Pt 4):786-96.  https://doi.org/10.1099/vir.0.035766-0  PMID: 22205716 
  40. Waldenström J, Lundkvist A, Falk KI, Garpmo U, Bergström S, Lindegren G, et al. Migrating birds and tickborne encephalitis virus. Emerg Infect Dis. 2007;13(8):1215-8.  https://doi.org/10.3201/eid1308.061416  PMID: 17953095 
  41. Kazarina A, Japiņa K, Keišs O, Salmane I, Bandere D, Capligina V, et al. Detection of tick-borne encephalitis virus in I. ricinus ticks collected from autumn migratory birds in Latvia. Ticks Tick Borne Dis. 2015;6(2):178-80.  https://doi.org/10.1016/j.ttbdis.2014.11.011  PMID: 25534819 
  42. Hutterer R, Ivanova T, Meyer-Cords C, Rodrigues L. Bat migrations in Europe: a review of banding data and literature. Bonn: Federal Agency for Nature Conservation; Dec 2005. p. 162.
  43. Nosek J, Gresikova M, Rehacek J. Persistence of tick-borne encephalitis virus in hibernating bats. Acta Virol. 1961;5(2):112-6.
  44. Süss J, Schrader C, Abel U, Voigt WP, Schosser R. Annual and seasonal variation of tick-borne encephalitis virus (TBEV) prevalence in ticks in selected hot spot areas in Germany using a nRT-PCR: results from 1997 and 1998. Zentralbl Bakteriol. 1999;289(5-7):564-78.  https://doi.org/10.1016/S0934-8840(99)80010-3  PMID: 10652722 
/content/10.2807/1560-7917.ES.2025.30.4.2400247
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error