1887
Research Open Access
Like 0

Abstract

Background

Vaccination programmes initiated in the early 1970s reduced the incidence of measles in Austria, which resulted in the interruption of endemic measles virus (MeV) circulation and the achievement of elimination status in 2018. However, large outbreaks occurred in 2023 and 2024.

Aim

By assessing MeV-specific IgG antibody levels, we analysed if immunity recently declined due to the COVID-19 pandemic, vaccine-induced immunity waned over long term or immunity gaps already pre-existed in the population.

Methods

We determined anti-MeV antibody levels in a retrospective dataset of 56,360 diagnostic samples (from 50,754 individuals) collected 2010–2024 and correlated antibody cutoffs to titres from a live-virus neutralisation test.

Results

Individuals born before 1970 (n = 15,007) had antibody levels > 3,000 IU/L, persisting into higher age, and < 2% (n = 300) of them were seronegative. In contrast, individuals born after 1990 (n = 12,778) displayed seronegativity rates of 13–20% and lower median antibody concentrations in seropositive individuals (449–773 IU/L). In these individuals, antibody levels decreased noticeably between the ages of 2 and 10 years but remained stable between those aged 10 and 30 years. There was no significant difference in seronegativity rates at the age of 12–24 months in children born 2016–2019 and 2020–2022 (the years of the COVID-19 pandemic).

Conclusion

In Austria, there are significant immunity gaps in individuals born after 1970, which pre-existed before the COVID-19 pandemic. Thus, young and middle-aged populations not immune against measles should be vaccinated to counteract a further decline of immunity at the population level and prevent outbreaks whenever MeV is imported.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.16.2400684
2025-04-24
2025-04-26
/content/10.2807/1560-7917.ES.2025.30.16.2400684
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/16/eurosurv-30-16-5.html?itemId=/content/10.2807/1560-7917.ES.2025.30.16.2400684&mimeType=html&fmt=ahah

References

  1. O’Connor P, Jankovic D, Muscat M, Ben-Mamou M, Reef S, Papania M, et al. Measles and rubella elimination in the WHO Region for Europe: progress and challenges. Clin Microbiol Infect. 2017;23(8):504-10.  https://doi.org/10.1016/j.cmi.2017.01.003  PMID: 28111293 
  2. Minta AA, Ferrari M, Antoni S, Portnoy A, Sbarra A, Lambert B, et al. Progress toward measles elimination - worldwide, 2000-2022. MMWR Morb Mortal Wkly Rep. 2023;72(46):1262-8.  https://doi.org/10.15585/mmwr.mm7246a3  PMID: 37971951 
  3. Moss WJ. Measles. Lancet. 2017;390(10111):2490-502.  https://doi.org/10.1016/S0140-6736(17)31463-0  PMID: 28673424 
  4. Bundesministerium Soziales, Gesundheit, Pflege und Konsumentenschutz (BMSGPK). Jahresstatistik meldepflichtiger Infektionskrankheiten seit 1990. [Statistics and case numbers of notifiable diseases in Austria 2024]. Vienna: BMSGPK; 22 Apr 2025. German. Available from: https://www.sozialministerium.at/Themen/Gesundheit/Uebertragbare-Krankheiten/Statistiken-und-Fallzahlen.html
  5. European Centre for Disease Prevention and Control (ECDC). Measles on the rise in the EU/EEA: considerations for public health response. Stockholm: ECDC; 16 Feb 2024. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/measles-eu-threat-assessment-brief-february-2024.pdf
  6. Austrian Agency for Health and Food Safety GmbH (AGES). Measles. Vienna: AGES; 16 Apr 2025. Available from: https://www.ages.at/en/human/disease/pathogens-from-a-to-z/measles
  7. European Centre for Disease Prevention and Control (ECDC). Communicable disease threats report, 6-12 July 2024, Week 28. Stockholm: ECDC; 12 Jul 2024. Available from: https://www.ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-6-12-july-2024-week-28
  8. Durrheim DN, Andrus JK, Tabassum S, Bashour H, Githanga D, Pfaff G. A dangerous measles future looms beyond the COVID-19 pandemic. Nat Med. 2021;27(3):360-1.  https://doi.org/10.1038/s41591-021-01237-5  PMID: 33589823 
  9. Yang L, Grenfell BT, Mina MJ. Waning immunity and re-emergence of measles and mumps in the vaccine era. Curr Opin Virol. 2020;40:48-54.  https://doi.org/10.1016/j.coviro.2020.05.009  PMID: 32634672 
  10. Li S, Ma C, Hao L, Su Q, An Z, Ma F, et al. Demographic transition and the dynamics of measles in six provinces in China: a modeling study. PLoS Med. 2017;14(4):e1002255.  https://doi.org/10.1371/journal.pmed.1002255  PMID: 28376084 
  11. Wang W, O’Driscoll M, Wang Q, Zhao S, Salje H, Yu H. Dynamics of measles immunity from birth and following vaccination. Nat Microbiol. 2024;9(7):1676-85.  https://doi.org/10.1038/s41564-024-01694-x  PMID: 38740931 
  12. Semmler G, Aberle SW, Griebler H, Richter L, Schmid D, Stiasny K, et al. Performance of four IgM antibody assays in the diagnosis of measles virus primary infection and cases with a serological profile indicating reinfection. J Clin Microbiol. 2021;59(5):e02047-20.  https://doi.org/10.1128/JCM.02047-20  PMID: 33627321 
  13. Chen RT, Markowitz LE, Albrecht P, Stewart JA, Mofenson LM, Preblud SR, et al. Measles antibody: reevaluation of protective titers. J Infect Dis. 1990;162(5):1036-42.  https://doi.org/10.1093/infdis/162.5.1036  PMID: 2230231 
  14. Bundesministerium für Soziales, Gesundheit, Pflege und Konsumentenschutz (BMSGPK). Impfplan Österreich 2024/2025 version 1.1. [Vaccination scheme Austria 2024/2025]. Vienna: BMSGPK; 18 Dec 2024. German. Available from: https://www.sozialministerium.at/Themen/Gesundheit/Impfen/Impfplan-%C3%96sterreich.html
  15. Bauer A, Tiefengraber D, Wiedermann U. Towards understanding vaccine hesitancy and vaccination refusal in Austria. Wien Klin Wochenschr. 2021;133(13-14):703-13.  https://doi.org/10.1007/s00508-020-01777-9  PMID: 33313966 
  16. Sandhofer MJ, Robak O, Frank H, Kulnig J. Vaccine hesitancy in Austria: a cross-sectional survey. Wien Klin Wochenschr. 2017;129(1-2):59-64.  https://doi.org/10.1007/s00508-016-1062-1  PMID: 27565644 
  17. Davidkin I, Jokinen S, Broman M, Leinikki P, Peltola H. Persistence of measles, mumps, and rubella antibodies in an MMR-vaccinated cohort: a 20-year follow-up. J Infect Dis. 2008;197(7):950-6.  https://doi.org/10.1086/528993  PMID: 18419470 
  18. Dine MS, Hutchins SS, Thomas A, Williams I, Bellini WJ, Redd SC. Persistence of vaccine-induced antibody to measles 26-33 years after vaccination. J Infect Dis. 2004;189(Suppl 1):S123-30.  https://doi.org/10.1086/380308  PMID: 15106101 
  19. Nic Lochlainn LM, de Gier B, van der Maas N, van Binnendijk R, Strebel PM, Goodman T, et al. Effect of measles vaccination in infants younger than 9 months on the immune response to subsequent measles vaccine doses: a systematic review and meta-analysis. Lancet Infect Dis. 2019;19(11):1246-54.  https://doi.org/10.1016/S1473-3099(19)30396-2  PMID: 31548081 
  20. Brinkman ID, Butler AL, de Wit J, van Binnendijk RS, Alter G, van Baarle D. Measles vaccination elicits a polyfunctional antibody response, which decays more rapidly in early vaccinated children. J Infect Dis. 2022;225(10):1755-64.  https://doi.org/10.1093/infdis/jiab318  PMID: 34134138 
  21. Ringler M, Göbel G, Möst J, Weithaler K. Fully vaccinated children are rare: immunization coverage and seroprevalence in Austrian school children. Eur J Epidemiol. 2003;18(2):161-70.  https://doi.org/10.1023/A:1023038705835  PMID: 12733839 
  22. Kreidl P, Ammerer D, Würzner R, Luckner Hornischer A, von Laer D, Borena W. Measles elimination: identifying susceptible sub-populations to tailor immunization strategies. Viruses. 2019;11(8):765.  https://doi.org/10.3390/v11080765  PMID: 31434243 
  23. Friedrich N, Poethko-Müller C, Kuhnert R, Matysiak-Klose D, Koch J, Wichmann O, et al. Seroprevalence of measles-, mumps-, and rubella-specific antibodies in the German adult population - cross-sectional analysis of the German Health Interview and Examination Survey for Adults (DEGS1). Lancet Reg Health Eur. 2021;7:100128.  https://doi.org/10.1016/j.lanepe.2021.100128  PMID: 34557838 
  24. Szinger D, Berki T, Drenjančević I, Samardzic S, Zelić M, Sikora M, et al. Raising epidemiological awareness: assessment of measles/MMR susceptibility in highly vaccinated clusters within the Hungarian and Croatian population-a sero-surveillance analysis. Vaccines (Basel). 2024;12(5):486.  https://doi.org/10.3390/vaccines12050486  PMID: 38793737 
  25. Miksch F, Popper N, Bicher M, Haar K, Paulke-Korinek M. PIN113 - evaluation of measles vaccination coverage in Austria. Value Health. 2017;20(9):A798-9.  https://doi.org/10.1016/j.jval.2017.08.2367 
  26. Bundesministerium für Soziales, Gesundheit, Pflege und Konsumentenschutz (BMSGPK). Kurzbericht Masern 2023 - Evaluierung der Masern-Durchimpfungsraten mit einem dynamischen agentenbasierten Simulationsmodell, Version 2.0. [Measles 2023 Summary Report - evaluation of measles vaccination rates with a dynamic agent-based simulation model, version 2.0]. Vienna: BMSGPK; 2023. German. Available from: https://www.sozialministerium.at/dam/jcr:04d0e207-6564-4bef-add1-c6d3b03f66f4/Kurzbericht_Masern_2023_Version%201.0.pdf
  27. Woudenberg T, van Binnendijk R, Veldhuijzen I, Woonink F, Ruijs H, van der Klis F, et al. Additional evidence on serological correlates of protection against measles: an observational cohort study among once vaccinated children exposed to measles. Vaccines (Basel). 2019;7(4):158.  https://doi.org/10.3390/vaccines7040158  PMID: 31652599 
/content/10.2807/1560-7917.ES.2025.30.16.2400684
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error