1887
Letter Open Access
Like 0
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.15.2500247
2025-04-17
2025-04-19
/content/10.2807/1560-7917.ES.2025.30.15.2500247
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/15/eurosurv-30-15-6.html?itemId=/content/10.2807/1560-7917.ES.2025.30.15.2500247&mimeType=html&fmt=ahah

References

  1. Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;80(1):27-38.  https://doi.org/10.1093/biomet/80.1.27 
  2. Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Stat Med. 2006;25(24):4216-26.  https://doi.org/10.1002/sim.2687  PMID: 16955543 
  3. Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Stat Med. 2002;21(16):2409-19.  https://doi.org/10.1002/sim.1047  PMID: 12210625 
  4. Gelman A, Hill J, editors. Chapter 3. Linear regression: the basics. In: Data analysis using regression and multilevel/hierarchical models. New York: Cambridge University Press; 2007. p. 625.
  5. van den Goorbergh R, van Smeden M, Timmerman D, Van Calster B. The harm of class imbalance corrections for risk prediction models: illustration and simulation using logistic regression. J Am Med Inform Assoc. 2022;29(9):1525-34.  https://doi.org/10.1093/jamia/ocac093  PMID: 35686364 
  6. Ntani G, Inskip H, Osmond C, Coggon D. Consequences of ignoring clustering in linear regression. BMC Med Res Methodol. 2021;21(1):139.  https://doi.org/10.1186/s12874-021-01333-7  PMID: 34233609 
/content/10.2807/1560-7917.ES.2025.30.15.2500247
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error