1887
Research Open Access
Like 0

Abstract

Background

West Nile virus (WNV) is a growing public health concern in Europe. Greece is one of the most affected countries in Europe, with the highest annual incidences.

Aim

We aimed at assessing IgG antibodies to WNV in the Greek population and compared the results with a nationwide survey conducted in the period 2012–2013.

Methods

In a geographically stratified sampling, 4,416 serum samples were collected and analysed for WNV-specific IgG antibodies using ELISA. Samples positive for WNV IgG were further tested with a WNV serum neutralisation test to detect false positives.

Results

The weighted seroprevalence, adjusted for age, sex and region, was 2.83% (95% confidence interval (CI): 2.32–3.44) in the 4,416 samples tested, significantly higher than in the 2012–2013 survey (1.55%; 95% CI: 1.17–2.04). The seropositivity increased with age with the highest seroprevalence in persons aged ≥ 80 years (6.04%; 95% CI: 3.28–10.88). No significant differences in seropositivity were observed between sexes or regions. We estimated that 312 (95% CI: 256–379) persons had a WNV infection per a case of West Nile neuroinvasive disease (WNND). A certain degree of discordance was observed between areas with increased seroprevalence and those with an increased incidence of WNND.

Conclusion

Our study reveals a wider geographical spread of WNV infections in Greece compared with previous investigations. The nearly twofold increase in seroprevalence highlights the need for ongoing monitoring and preventive measures to mitigate the impact of WNV on public health in Greece.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.15.2400487
2025-04-17
2025-04-19
/content/10.2807/1560-7917.ES.2025.30.15.2400487
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/15/eurosurv-30-15-3.html?itemId=/content/10.2807/1560-7917.ES.2025.30.15.2400487&mimeType=html&fmt=ahah

References

  1. Lindenbach B, Murray C, Thiel H, Rice C. Flaviviridae. In: Knipe DM, Howley OM (editors). Flaviviridae: the viruses and their replication. Fields Virology, 5th edition. Philadelphia: Lippincott William & Wilkins; 21 May 2013. p. 712-46.
  2. Work TH, Hurlbut HS, Taylor RM. Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs. Am J Trop Med Hyg. 1955;4(5):872-88.  https://doi.org/10.4269/ajtmh.1955.4.872  PMID: 13259011 
  3. Pérez-Ramírez E, Llorente F, Jiménez-Clavero . Experimental infections of wild birds with West Nile virus. Viruses. 2014;6(2):752-81.  https://doi.org/10.3390/v6020752  PMID: 24531334 
  4. Weaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, Chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med. 2018;69(1):395-408.  https://doi.org/10.1146/annurev-med-050715-105122  PMID: 28846489 
  5. Kilpatrick AM, LaDeau SL, Marra PP. Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk. 2007;124(4):1121-36.  https://doi.org/10.1093/auk/124.4.1121 
  6. Marka A, Diamantidis A, Papa A, Valiakos G, Chaintoutis SC, Doukas D, et al. West Nile virus state of the art report of MALWEST Project. Int J Environ Res Public Health. 2013;10(12):6534-610.  https://doi.org/10.3390/ijerph10126534  PMID: 24317379 
  7. World Health Organization (WHO). West Nile virus. Geneva: WHO; 3 Oct 2017. Available from: https://www.who.int/news-room/fact-sheets/detail/west-nile-virus
  8. Davis LE, DeBiasi R, Goade DE, Haaland KY, Harrington JA, Harnar JB, et al. West Nile virus neuroinvasive disease. Ann Neurol. 2006;60(3):286-300.  https://doi.org/10.1002/ana.20959  PMID: 16983682 
  9. Debiasi RL. West nile virus neuroinvasive disease. Curr Infect Dis Rep. 2011;13(4):350-9.  https://doi.org/10.1007/s11908-011-0193-9  PMID: 21544522 
  10. Papa A, Anastasiadou A, Delianidou M. West Nile virus IgM and IgG antibodies three years post- infection. Hippokratia. 2015;19(1):34-6. PMID: 26435644 
  11. Centers for Disease Control and Prevention (CDC). Clinical testing and diagnosis for West Nile virus disease. Atlanta: CDC; 15 May 2024. Available from: https://www.cdc.gov/west-nile-virus/hcp/diagnosis-testing/?CDC_AAref_Val=https://www.cdc.gov/westnile/healthcareproviders/healthCareProviders-Diagnostic.html
  12. Niedrig M, Sonnenberg K, Steinhagen K, Paweska JT. Comparison of ELISA and immunoassays for measurement of IgG and IgM antibody to West Nile virus in human sera against virus neutralisation. J Virol Methods. 2007;139(1):103-5.  https://doi.org/10.1016/j.jviromet.2006.09.009  PMID: 17084464 
  13. Beck C, Lowenski S, Durand B, Bahuon C, Zientara S, Lecollinet S. Improved reliability of serological tools for the diagnosis of West Nile fever in horses within Europe. PLoS Negl Trop Dis. 2017;11(9):e0005936.  https://doi.org/10.1371/journal.pntd.0005936  PMID: 28915240 
  14. Pervanidou D, Detsis M, Danis K, Mellou K, Papanikolaou E, Terzaki I, et al. West Nile virus outbreak in humans, Greece, 2012: third consecutive year of local transmission. Euro Surveill. 2014;19(13):20758.  https://doi.org/10.2807/1560-7917.ES2014.19.13.20758  PMID: 24721540 
  15. Pervanidou D, Kefaloudi CN, Vakali A, Tsakalidou O, Karatheodorou M, Tsioka K, et al. The 2022 West Nile virus season in Greece; a quite intense season. Viruses. 2023;15(7):1481.  https://doi.org/10.3390/v15071481  PMID: 37515168 
  16. Tsioka K, Gewehr S, Kalaitzopoulou S, Pappa S, Stoikou K, Mourelatos S, et al. Detection and molecular characterization of West Nile virus in Culex pipiens mosquitoes in Central Macedonia, Greece, 2019-2021. Acta Trop. 2022;230:106391.  https://doi.org/10.1016/j.actatropica.2022.106391  PMID: 35271813 
  17. Ladbury GAF, Gavana M, Danis K, Papa A, Papamichail D, Mourelatos S, et al. Population seroprevalence study after a West Nile virus lineage 2 epidemic, Greece, 2010. PLoS One. 2013;8(11):e80432.  https://doi.org/10.1371/journal.pone.0080432  PMID: 24260390 
  18. Hadjichristodoulou C, Pournaras S, Mavrouli M, Marka A, Tserkezou P, Baka A, et al. West Nile virus seroprevalence in the Greek population in 2013: a nationwide cross-sectional survey. PLoS One. 2015;10(11):e0143803.  https://doi.org/10.1371/journal.pone.0143803  PMID: 26605539 
  19. Pervanidou D, Vakali A, Georgakopoulou T, Panagiotopoulos T, Patsoula E, Koliopoulos G, et al. West Nile virus in humans, Greece, 2018: the largest seasonal number of cases, 9 years after its emergence in the country. Euro Surveill. 2020;25(32):1900543.  https://doi.org/10.2807/1560-7917.ES.2020.25.32.1900543  PMID: 32794446 
  20. Constant O, Gil P, Barthelemy J, Bolloré K, Foulongne V, Desmetz C, et al. One Health surveillance of West Nile and Usutu viruses: a repeated cross-sectional study exploring seroprevalence and endemicity in Southern France, 2016 to 2020. Euro Surveill. 2022;27(25):2200068.  https://doi.org/10.2807/1560-7917.ES.2022.27.25.2200068  PMID: 35748300 
  21. Christova I, Panayotova E, Tchakarova S, Taseva E, Trifonova I, Gladnishka T. A nationwide seroprevalence screening for West Nile virus and tick-borne encephalitis virus in the population of Bulgaria. J Med Virol. 2017;89(10):1875-8.  https://doi.org/10.1002/jmv.24855  PMID: 28504357 
  22. Marchi S, Montomoli E, Viviani S, Giannecchini S, Stincarelli MA, Lanave G, et al. West Nile virus seroprevalence in the Italian Tuscany Region from 2016 to 2019. Pathogens. 2021;10(7):844.  https://doi.org/10.3390/pathogens10070844  PMID: 34357994 
  23. Coroian M, Mihalca AD, Dobler G, Euringer K, Girl P, Borșan SD, et al. Seroprevalence rates against West Nile, Usutu, and tick-borne encephalitis viruses in blood-donors from North-Western Romania. Int J Environ Res Public Health. 2022;19(13):8182.  https://doi.org/10.3390/ijerph19138182  PMID: 35805850 
  24. Nagy A, Csonka N, Takács M, Mezei E, Barabás É. West Nile and Usutu virus seroprevalence in Hungary: A nationwide serosurvey among blood donors in 2019. PLoS One. 2022;17(4):e0266840.  https://doi.org/10.1371/journal.pone.0266840  PMID: 35395048 
  25. Carson PJ, Prince HE, Biggerstaff BJ, Lanciotti R, Tobler LH, Busch M. Characteristics of antibody responses in West Nile virus-seropositive blood donors. J Clin Microbiol. 2014;52(1):57-60.  https://doi.org/10.1128/JCM.01932-13  PMID: 24131687 
  26. Bassal R, Shohat T, Kaufman Z, Mannasse B, Shinar E, Amichay D, et al. The seroprevalence of West Nile virus in Israel: a nationwide cross sectional study. PLoS One. 2017;12(6):e0179774.  https://doi.org/10.1371/journal.pone.0179774  PMID: 28622360 
  27. Hellenic Statistical Authority (HELSTAT). [Study on Qualitative Characteristics of Domestic Tourists]. Piraeus: HELSTAT; 2023. Greek. Available from: https://www.statistics.gr/documents/20181/622f5c6e-d091-fd2f-4db0-90e12a39256c
  28. Vakali A, Beleri S, Tegos N, Fytrou A, Mpimpa A, Sergentanis TN, et al. Entomological surveillance activities in regions in Greece: data on mosquito species abundance and West Nile virus detection in Culex pipiens pools (2019-2020). Trop Med Infect Dis. 2022;8(1):1.  https://doi.org/10.3390/tropicalmed8010001  PMID: 36668908 
  29. Fotakis EA, Mavridis K, Kampouraki A, Balaska S, Tanti F, Vlachos G, et al. Mosquito population structure, pathogen surveillance and insecticide resistance monitoring in urban regions of Crete, Greece. PLoS Negl Trop Dis. 2022;16(2):e0010186.  https://doi.org/10.1371/journal.pntd.0010186  PMID: 35176020 
  30. Hellenic National Public Health Organization (NPHO). [Entomological surveillance report, Greece, 2021]. Athens: NPHO; 2022. Greek. Available from: https://eody.gov.gr/wp-content/uploads/2022/04/entomologiki_2021.pdf
  31. Sofia M, Giannakopoulos A, Giantsis IA, Touloudi A, Birtsas P, Papageorgiou K, et al. West Nile virus occurrence and ecological niche modeling in wild bird species and mosquito vectors: an active surveillance program in the Peloponnese Region of Greece. Microorganisms. 2022;10(7):1328.  https://doi.org/10.3390/microorganisms10071328  PMID: 35889046 
  32. Mostashari F, Bunning ML, Kitsutani PT, Singer DA, Nash D, Cooper MJ, et al. Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet. 2001;358(9278):261-4.  https://doi.org/10.1016/S0140-6736(01)05480-0  PMID: 11498211 
  33. Carson PJ, Borchardt SM, Custer B, Prince HE, Dunn-Williams J, Winkelman V, et al. Neuroinvasive disease and West Nile virus infection, North Dakota, USA, 1999-2008. Emerg Infect Dis. 2012;18(4):684-6.  https://doi.org/10.3201/eid1804.111313  PMID: 22469465 
  34. Murray KO, Garcia MN, Yan C, Gorchakov R. Persistence of detectable immunoglobulin M antibodies up to 8 years after infection with West Nile virus. Am J Trop Med Hyg. 2013;89(5):996-1000.  https://doi.org/10.4269/ajtmh.13-0232  PMID: 24062481 
  35. Prince HE, Tobler LH, Lapé-Nixon M, Foster GA, Stramer SL, Busch MP. Development and persistence of West Nile virus-specific immunoglobulin M (IgM), IgA, and IgG in viremic blood donors. J Clin Microbiol. 2005;43(9):4316-20.  https://doi.org/10.1128/JCM.43.9.4316-4320.2005  PMID: 16145071 
/content/10.2807/1560-7917.ES.2025.30.15.2400487
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error