1887
Systematic Review Open Access
Like 0

Abstract

Background

Ambient temperature may affect respiratory health, while the temperature sensitivity of respiratory infections may be pathogen-dependent.

Aims

We sought to explore pathogen-specific associations between ambient temperature and respiratory infections.

Methods

We searched nine databases for a random-effects meta-analysis to pool the relative risk (RR) of respiratory infection by pathogen per 1° C temperature rise, compared to populations unexposed to the same temperature. We conducted pathogen-specific analyses, sensitivity analyses, subgroup analyses and meta-regression.

Results

A total of 137 studies were eligible for meta-analysis. The pooled and single-study estimates revealed that the incidence of respiratory syncytial virus (RR = 0.14; 95% confidence interval (CI): 0.09–0.23), influenza virus (IV) (RR = 0.40; 95% CI: 0.27–0.61), human metapneumovirus (RR = 0.48; 95% CI: 0.32–0.73), human coronavirus (HCoV) (RR = 0.21; 95% CI: 0.07–0.61) and SARS-CoV-2 (RR = 0.52; 95% CI: 0.35–0.78) decreased per 1° C temperature rise, while that of human parainfluenza virus (HPIV) (RR = 2.35; 95% CI: 1.46–3.77), human bocavirus (HBoV) (RR = 1.86; 95% CI: 1.04–3.32) and MERS-CoV (RR = 1.05; 95% CI: 1.04–1.07) increased. The risk of infection was lower for IVA, IVB, HCoV-229E and HCoV-OC43, while HPIV-3, and HBoV-1 were at increased risk. The risk of pharyngitis (RR = 0.46; 95% CI: 0.30–0.69) decreased per 1° C temperature rise, while (RR = 1.04; 95% CI: 1.03–1.05) and infections (RR = 2.69; 95% CI: 1.11–6.53) increased.

Conclusions

Temperature sensitivity of respiratory infections can vary with the specific pathogen type and subtype that causes the infection. As the climatic conditions will become warmer, public health policy makers should act to develop pathogen adaptation strategies.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.11.2400375
2025-03-20
2025-03-23
/content/10.2807/1560-7917.ES.2025.30.11.2400375
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/11/eurosurv-30-11-6.html?itemId=/content/10.2807/1560-7917.ES.2025.30.11.2400375&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). Influenza (seasonal). Geneva: WHO; 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
  2. Florman AL, McLaren LC. The effect of altitude and weather on the occurrence of outbreaks of respiratory syncytial virus infections. J Infect Dis. 1988;158(6):1401-2.  https://doi.org/10.1093/infdis/158.6.1401  PMID: 3198947 
  3. Chan PW, Chew FT, Tan TN, Chua KB, Hooi PS. Seasonal variation in respiratory syncytial virus chest infection in the tropics. Pediatr Pulmonol. 2002;34(1):47-51.  https://doi.org/10.1002/ppul.10095  PMID: 12112797 
  4. Perin J, Mulick A, Yeung D, Villavicencio F, Lopez G, Strong KL, et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc Health. 2022;6(2):106-15.  https://doi.org/10.1016/S2352-4642(21)00311-4  PMID: 34800370 
  5. Jin X, Ren J, Li R, Gao Y, Zhang H, Li J, et al. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine. 2021;37:100986.  https://doi.org/10.1016/j.eclinm.2021.100986  PMID: 34386754 
  6. Jain N, Lodha R, Kabra SK. Upper respiratory tract infections. Indian J Pediatr. 2001;68(12):1135-8.  https://doi.org/10.1007/BF02722930  PMID: 11838568 
  7. Kardos P, Malek FA. Erkältung – ein Sammelbegriff für akute Infektionen von Nase, Rachen, Kehlkopf und Bronchien. [Common cold - an umbrella term for acute infections of nose, throat, larynx and bronchi]. Pneumologie. 2017;71(4):221-6. German. PMID:27912214 PMID: 27912214 
  8. Nicholson KG, Kent J, Hammersley V, Cancio E. Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study of disease burden. BMJ. 1997;315(7115):1060-4.  https://doi.org/10.1136/bmj.315.7115.1060  PMID: 9366736 
  9. Heikkinen T, Järvinen A. The common cold. Lancet. 2003;361(9351):51-9.  https://doi.org/10.1016/S0140-6736(03)12162-9  PMID: 12517470 
  10. Lavine JS, Bjornstad ON, Antia R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science. 2021;371(6530):741-5.  https://doi.org/10.1126/science.abe6522  PMID: 33436525 
  11. Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, Gray AP, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221-48.  https://doi.org/10.1016/S0140-6736(22)02185-7  PMID: 36423648 
  12. Mirsaeidi M, Motahari H, Taghizadeh Khamesi M, Sharifi A, Campos M, Schraufnagel DE. Climate change and respiratory infections. Ann Am Thorac Soc. 2016;13(8):1223-30.  https://doi.org/10.1513/AnnalsATS.201511-729PS  PMID: 27300144 
  13. Pica N, Bouvier NM. Ambient temperature and respiratory virus infection. Pediatr Infect Dis J. 2014;33(3):311-3.  https://doi.org/10.1097/INF.0000000000000235  PMID: 24378933 
  14. van Loghem JJ. An Epidemiological contribution to the knowledge of the respiratory diseases. J Hyg (Lond). 1928;28(1):33-54.  https://doi.org/10.1017/S0022172400009372  PMID: 20474979 
  15. Fodha I, Vabret A, Trabelsi A, Freymuth F. Epidemiological and antigenic analysis of respiratory syncytial virus in hospitalised Tunisian children, from 2000 to 2002. J Med Virol. 2004;72(4):683-7.  https://doi.org/10.1002/jmv.20038  PMID: 14981774 
  16. Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 2010;8(2):e1000316.  https://doi.org/10.1371/journal.pbio.1000316  PMID: 20186267 
  17. Cox NJ, Subbarao K. Global epidemiology of influenza: past and present. Annu Rev Med. 2000;51(1):407-21.  https://doi.org/10.1146/annurev.med.51.1.407  PMID: 10774473 
  18. Tamerius J, Nelson MI, Zhou SZ, Viboud C, Miller MA, Alonso WJ. Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ Health Perspect. 2011;119(4):439-45.  https://doi.org/10.1289/ehp.1002383  PMID: 21097384 
  19. Finkelman BS, Viboud C, Koelle K, Ferrari MJ, Bharti N, Grenfell BT. Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: viral coexistence and latitudinal gradients. PLoS One. 2007;2(12):e1296.  https://doi.org/10.1371/journal.pone.0001296  PMID: 18074020 
  20. Azziz Baumgartner E, Dao CN, Nasreen S, Bhuiyan MU, Mah-E-Muneer S, Al Mamun A, et al. Seasonality, timing, and climate drivers of influenza activity worldwide. J Infect Dis. 2012;206(6):838-46.  https://doi.org/10.1093/infdis/jis467  PMID: 22829641 
  21. Jaakkola K, Saukkoriipi A, Jokelainen J, Juvonen R, Kauppila J, Vainio O, et al. Decline in temperature and humidity increases the occurrence of influenza in cold climate. Environ Health. 2014;13(1):22.  https://doi.org/10.1186/1476-069X-13-22  PMID: 24678699 
  22. Yan X, Wang Z, Wang X, Zhang X, Wang L, Lu Z, et al. Association between human coronaviruses’ epidemic and environmental factors on a global scale. Environ Sci Pollut Res Int. 2022;29(10):14333-47.  https://doi.org/10.1007/s11356-021-16500-y  PMID: 34609683 
  23. Anastasiou OE, Hüsing A, Korth J, Theodoropoulos F, Taube C, Jöckel KH, et al. Seasonality of non-SARS, non-MERS coronaviruses and the impact of meteorological factors. Pathogens. 2021;10(2):187.  https://doi.org/10.3390/pathogens10020187  PMID: 33572306 
  24. Li Y, Wang X, Nair H. Global seasonality of human seasonal coronaviruses: a clue for postpandemic circulating season of severe acute respiratory syndrome coronavirus 2? J Infect Dis. 2020;222(7):1090-7.  https://doi.org/10.1093/infdis/jiaa436  PMID: 32691843 
  25. Mecenas P, Bastos RTDRM, Vallinoto ACR, Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One. 2020;15(9):e0238339.  https://doi.org/10.1371/journal.pone.0238339  PMID: 32946453 
  26. Merow C, Urban MC. Seasonality and uncertainty in global COVID-19 growth rates. Proc Natl Acad Sci USA. 2020;117(44):27456-64.  https://doi.org/10.1073/pnas.2008590117  PMID: 33051302 
  27. Ye D, Yang X, Zhang Q. An analysis of the relationship between SARS and meteorological conditions in Beijing area. Qixiang. 2003;29(10):42-5.  https://doi.org/10.7519/j.issn.1000-0526.2003.10.010 
  28. Yang ZC, Du L, Wang M, Xu JM, Tan WY, Xu YC, et al. Analysis on effect of air pressure and air temperature on outbreak and epidemic of SARS. Chin J Publ Health. 2003;19:1028-30.
  29. Pica N, Bouvier NM. Environmental factors affecting the transmission of respiratory viruses. Curr Opin Virol. 2012;2(1):90-5.  https://doi.org/10.1016/j.coviro.2011.12.003  PMID: 22440971 
  30. Tang JW, Loh TP. Correlations between climate factors and incidence--a contributor to RSV seasonality. Rev Med Virol. 2014;24(1):15-34.  https://doi.org/10.1002/rmv.1771  PMID: 24421259 
  31. Valsamatzi-Panagiotou A, Penchovsky R. Environmental factors influencing the transmission of the coronavirus 2019: a review. Environ Chem Lett. 2022;20(3):1603-10.  https://doi.org/10.1007/s10311-022-01418-9  PMID: 35221835 
  32. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(71):n71.  https://doi.org/10.1136/bmj.n71  PMID: 33782057 
  33. Rooney AA, Boyles AL, Wolfe MS, Bucher JR, Thayer KA. Systematic review and evidence integration for literature-based environmental health science assessments. Environ Health Perspect. 2014;122(7):711-8.  https://doi.org/10.1289/ehp.1307972  PMID: 24755067 
  34. Janssens ACJW, Gwinn M, Brockman JE, Powell K, Goodman M. Novel citation-based search method for scientific literature: a validation study. BMC Med Res Methodol. 2020;20(1):25.  https://doi.org/10.1186/s12874-020-0907-5  PMID: 32028894 
  35. Razanajatovo NH, Richard V, Hoffmann J, Reynes JM, Razafitrimo GM, Randremanana RV, et al. Viral etiology of influenza-like illnesses in Antananarivo, Madagascar, July 2008 to June 2009. PLoS One. 2011;6(3):e17579.  https://doi.org/10.1371/journal.pone.0017579  PMID: 21390235 
  36. The World Bank. World Bank country and lending groups. Washington D.C.: The World Bank; 2020. [Accessed: 20 Feb 2025]. Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
  37. Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11(5):1633-44.  https://doi.org/10.5194/hess-11-1633-2007 
  38. Wagatsuma K, Koolhof IS, Saito R. Nonlinear and multidelayed effects of meteorological drivers on human respiratory syncytial virus infection in Japan. Viruses. 2023;15(9):1914.  https://doi.org/10.3390/v15091914  PMID: 37766320 
  39. Wagatsuma K, Koolhof IS, Saito R. The relative roles of ambient temperature and mobility patterns in shaping the transmission heterogeneity of SARS-CoV-2 in Japan. Viruses. 2022;14(10):2232.  https://doi.org/10.3390/v14102232  PMID: 36298787 
  40. Solanes A, Laredo C, Guasp M, Fullana MA, Fortea L, Garcia-Olivé I, et al. No Effects of Meteorological Factors on the SARS-CoV-2 Infection Fatality Rate. Biomed Environ Sci. 2021;34(11):871-80. PMID: 34955147 
  41. Pitzer VE, Viboud C, Alonso WJ, Wilcox T, Metcalf CJ, Steiner CA, et al. Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States. PLoS Pathog. 2015;11(1):e1004591.  https://doi.org/10.1371/journal.ppat.1004591  PMID: 25569275 
  42. Huang P, Yu SY, Chen Q, Zheng HY, Hu J, Luo QH, Nie J. Study on the relationship between SARS prevalence and climate change in Guangdong Province. Chin J Zoonoses. 2004;24(8):714-16.  https://doi.org/10.3969/j.issn.1002-2694.2004.08.017 
  43. Liu J, Varghese BM, Hansen A, Zhang Y, Driscoll T, Morgan G, et al. Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet Health. 2022;6(6):e484-95.  https://doi.org/10.1016/S2542-5196(22)00117-6  PMID: 35709806 
  44. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97-111.  https://doi.org/10.1002/jrsm.12  PMID: 26061376 
  45. Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005;30(3):261-93.  https://doi.org/10.3102/10769986030003261 
  46. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-60.  https://doi.org/10.1136/bmj.327.7414.557  PMID: 12958120 
  47. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10(10):ED000142.  https://doi.org/10.1002/14651858.ED000142  PMID: 31643080 
  48. du Prel JB, Puppe W, Gröndahl B, Knuf M, Weigl JA, Schaaff F, et al. Are meteorological parameters associated with acute respiratory tract infections? Clin Infect Dis. 2009;49(6):861-8.  https://doi.org/10.1086/605435  PMID: 19663691 
  49. Huang J, Rong J, Kong D, Liu X, Huang J, Lin H, et al. The etiology of community acquired pneumonia among hospitalized children in Zhongshan and its relation with climate parameters. Chin Prev Med.2019;20(3).
  50. Chan PK, Mok HY, Lee TC, Chu IM, Lam WY, Sung JJ. Seasonal influenza activity in Hong Kong and its association with meteorological variations. J Med Virol. 2009;81(10):1797-806.  https://doi.org/10.1002/jmv.21551  PMID: 19697414 
  51. Welliver R. The relationship of meteorological conditions to the epidemic activity of respiratory syncytial virus. Paediatr Respir Rev. 2009;10(Suppl 1):6-8.  https://doi.org/10.1016/S1526-0542(09)70004-1  PMID: 19651390 
  52. Darniot M, Pitoiset C, Millière L, Aho-Glélé LS, Florentin E, Bour JB, et al. Different meteorological parameters influence metapneumovirus and respiratory syncytial virus activity. J Clin Virol. 2018;104:77-82.  https://doi.org/10.1016/j.jcv.2018.05.002  PMID: 29763837 
  53. Sharma A, Preece B, Swann H, Fan X, McKenney RJ, Ori-McKenney KM, et al. Structural stability of SARS-CoV-2 virus like particles degrades with temperature. Biochem Biophys Res Commun. 2021;534:343-6.  https://doi.org/10.1016/j.bbrc.2020.11.080  PMID: 33272571 
  54. Price RHM, Graham C, Ramalingam S. Association between viral seasonality and meteorological factors. Sci Rep. 2019;9(1):929.  https://doi.org/10.1038/s41598-018-37481-y  PMID: 30700747 
  55. Yin FH, Knight E Jr. In vivo and in vitro synthesis of human rhinovirus type 2 ribonucleic acid. J Virol. 1972;10(1):93-8.  https://doi.org/10.1128/jvi.10.1.93-98.1972  PMID: 4339200 
  56. Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L, Zhao H, et al. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci USA. 2015;112(3):827-32.  https://doi.org/10.1073/pnas.1411030112  PMID: 25561542 
  57. Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007;3(10):1470-6.  https://doi.org/10.1371/journal.ppat.0030151  PMID: 17953482 
  58. Xu L, Bao L, Deng W, Zhu H, Chen T, Lv Q, et al. Correction to: The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus. Virol J. 2020;17(1):83.  https://doi.org/10.1186/s12985-020-01356-4  PMID: 32580773 
  59. Xu XU, Chu D, Peng P, Zhang X, Yan L, Yu M, et al. Animal model of influenza virus. J Path Biol.2022;17(8):982-6.
  60. Bisht K, Moore JL, Caprioli RM, Skaar EP, Wakeman CA. Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms Microbiomes. 2021;7(1):22.  https://doi.org/10.1038/s41522-021-00194-8  PMID: 33727555 
  61. Bisht K, Luecke AR, Wakeman CA. Temperature-specific adaptations and genetic requirements in a biofilm formed by Pseudomonas aeruginosa. Front Microbiol. 2023;13:1032520.  https://doi.org/10.3389/fmicb.2022.1032520  PMID: 36687584 
  62. Fields BS, Benson RF, Besser RE. Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev. 2002;15(3):506-26.  https://doi.org/10.1128/CMR.15.3.506-526.2002  PMID: 12097254 
  63. Katz SM, Hammel JM. The effect of drying, heat, and pH on the survival of Legionella pneumophila. Ann Clin Lab Sci. 1987;17(3):150-6. PMID: 3606021 
  64. Chen Xiaofang TQ, Zhang N, Ge H. Research progress in the type II secretion system of Legionella pneumophila and its substrates. Wei Sheng Wu Xue Tong Bao. 2022;49(9):3906-18.
  65. Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Migliaccio CA, et al. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci USA. 2001;98(18):10416-21.  https://doi.org/10.1073/pnas.191267598  PMID: 11517341 
  66. Pandya U, Allen CA, Watson DA, Niesel DW. Global profiling of Streptococcus pneumoniae gene expression at different growth temperatures. Gene. 2005;360(1):45-54.  https://doi.org/10.1016/j.gene.2005.06.023  PMID: 16154298 
  67. Saito R, Matsuoka S, Fujinami Y, Nonaka S, Ichinose S, Kubota T, et al. Role of Moraxella catarrhalis outer membrane protein CD in bacterial cell morphology and autoaggregation. Res Microbiol. 2013;164(3):236-43.  https://doi.org/10.1016/j.resmic.2012.12.005  PMID: 23257176 
  68. Li Y, Reeves RM, Wang X, Bassat Q, Brooks WA, Cohen C, et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Health. 2019;7(8):e1031-45.  https://doi.org/10.1016/S2214-109X(19)30264-5  PMID: 31303294 
  69. van Doremalen N, Bushmaker T, Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill. 2013;18(38):20590.  https://doi.org/10.2807/1560-7917.ES2013.18.38.20590  PMID: 24084338 
  70. Mizuta K, Abiko C, Aoki Y, Ikeda T, Itagaki T, Katsushima F, et al. Epidemiology of parainfluenza virus types 1, 2 and 3 infections based on virus isolation between 2002 and 2011 in Yamagata, Japan. Microbiol Immunol. 2012;56(12):855-8.  https://doi.org/10.1111/j.1348-0421.2012.00507.x  PMID: 22946520 
  71. Fry AM, Curns AT, Harbour K, Hutwagner L, Holman RC, Anderson LJ. Seasonal trends of human parainfluenza viral infections: United States, 1990-2004. Clin Infect Dis. 2006;43(8):1016-22.  https://doi.org/10.1086/507638  PMID: 16983614 
  72. Tyrrell DA, Bynoe ML. Some further virus isolations from common colds. BMJ. 1961;1(5223):393-7.  https://doi.org/10.1136/bmj.1.5223.393  PMID: 13778900 
  73. Seifert M, van Nies P, Papini FS, Arnold JJ, Poranen MM, Cameron CE, et al. Temperature controlled high-throughput magnetic tweezers show striking difference in activation energies of replicating viral RNA-dependent RNA polymerases. Nucleic Acids Res. 2020;48(10):5591-602.  https://doi.org/10.1093/nar/gkaa233  PMID: 32286652 
  74. Shaw Stewart PD, Bach JL. Temperature dependent viral tropism: understanding viral seasonality and pathogenicity as applied to the avoidance and treatment of endemic viral respiratory illnesses. Rev Med Virol. 2022;32(1):e2241.  https://doi.org/10.1002/rmv.2241  PMID: 33942417 
  75. Ference RS, Leonard JA, Stupak HD. Physiologic model for seasonal patterns in flu transmission. Laryngoscope. 2020;130(2):309-13.  https://doi.org/10.1002/lary.27910  PMID: 30865297 
  76. Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, et al. Airborne transmission of respiratory viruses. Science. 2021;373(6558):eabd9149.  https://doi.org/10.1126/science.abd9149  PMID: 34446582 
  77. Weber TP, Stilianakis NI. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect. 2008;57(5):361-73.  https://doi.org/10.1016/j.jinf.2008.08.013  PMID: 18848358 
  78. Dong Z, Ma J, Qiu J, Ren Q, Shan Q, Duan X, et al. Airborne fine particles drive H1N1 viruses deep into the lower respiratory tract and distant organs. Sci Adv. 2023;9(23):eadf2165.  https://doi.org/10.1126/sciadv.adf2165  PMID: 37294770 
  79. World Health Organization (WHO). Vaccines and immunization. Geneva: WHO. [Accessed: 21 Feb 2025]. Available from: https://www.who.int/health-topics/vaccines-and-immunization#tab=tab_1
  80. Boddington NL, Pearson I, Whitaker H, Mangtani P, Pebody RG. Effectiveness of influenza vaccination in preventing hospitalization due to influenza in children: a systematic review and meta-analysis. Clin Infect Dis. 2021;73(9):1722-32.  https://doi.org/10.1093/cid/ciab270  PMID: 33772586 
  81. Jefferies JM, Macdonald E, Faust SN, Clarke SC. 13-valent pneumococcal conjugate vaccine (PCV13). Hum Vaccin. 2011;7(10):1012-8.  https://doi.org/10.4161/hv.7.10.16794  PMID: 21941097 
  82. United States Food and Drug Administration (FDA). Pneumovax® 23 (pneumococcal vaccine polyvalent). Full prescribing information. Whitehouse Station: Merck & Co; 2021. Available from: https://www.fda.gov/media/80547/download
  83. Centers for Disease Control and Prevention (CDC). Pneumococcal vaccination. Atlanta: CDC. [Accessed: 21 Feb 2025]. Available from: https://www.cdc.gov/pneumococcal/vaccines/index.html
  84. World Health Organization (WHO). Coronavirus disease (COVID-19): Vaccines and vaccine safety. Geneva: WHO: 2024. Available from: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-vaccines
  85. United States Food and Drug Administration (FDA). FDA approves first respiratory syncytial virus (RSV) vaccine. Arexvy approved for individuals 60 years of age and older. Silver Spring: FDA; 2023. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-respiratory-syncytial-virus-rsv-vaccine
  86. Broberg EK, Nohynek H. Respiratory syncytial virus infections - recent developments providing promising new tools for disease prevention. Euro Surveill. 2023;28(49):2300686.  https://doi.org/10.2807/1560-7917.ES.2023.28.49.2300686  PMID: 38062943 
  87. World Health Organization (WHO). Haemophilus influenzae type b (Hib). Geneva: WHO; 2017. Available from: https://www.who.int/europe/news-room/fact-sheets/item/haemophilus-influenzae-type-b-%28hib%29
  88. Ross I, Bick S, Ayieko P, Dreibelbis R, Wolf J, Freeman MC, et al. Effectiveness of handwashing with soap for preventing acute respiratory infections in low-income and middle-income countries: a systematic review and meta-analysis. Lancet. 2023;401(10389):1681-90.  https://doi.org/10.1016/S0140-6736(23)00021-1  PMID: 37121242 
  89. Young JJ, Mutch H, Rose AMC, Evans JMM, McMenamin J, Murray J, et al. . Enhanced surveillance of hospitalized COVID-19 patients in Europe: an evaluation of the I-MOVE-COVID-19 surveillance network. Eur J Public Health. 2024;34(1):181-9.  https://doi.org/10.1093/eurpub/ckad185  PMID: 37889597 
  90. Public Health England (PHE). Cold Weather Plan for England Making the case: why long-term strategic planning for cold weather is essential to health and wellbeing. London; PHE. [Accessed: 25 Feb 2025]. Available from: https://assets.publishing.service.gov.uk/media/5a801341e5274a2e8ab4e0a4/CWP_Making_the_Case_2014_FINAL.pdf
  91. United Kingdom Health Security Agency (UKHSA). The Cold Weather Plan for England: Protecting health and reducing harm from cold weather. London; UKHSA. [Accessed: 25 Feb 2025]. Available from: https://www.gloshospitals.nhs.uk/media/documents/UKHSA_Cold_Weather_Plan_for_England.pdf
  92. Boeckmann M, Zeeb H. Using a social justice and health framework to assess European climate change adaptation strategies. Int J Environ Res Public Health. 2014;11(12):12389-411.  https://doi.org/10.3390/ijerph111212389  PMID: 25464133 
  93. Kramer SC, Pei S, Shaman J. Forecasting influenza in Europe using a metapopulation model incorporating cross-border commuting and air travel. PLOS Comput Biol. 2020;16(10):e1008233.  https://doi.org/10.1371/journal.pcbi.1008233  PMID: 33052907 
/content/10.2807/1560-7917.ES.2025.30.11.2400375
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error