-
Global meta-analysis of short-term associations between ambient temperature and pathogen-specific respiratory infections, 2004 to 2023
- Xue Shang1 , Ruhao Zhang1 , Junyao Zheng2,3 , Yi Luo4 , Kangle Guo5 , Qingqing Zhou1 , Xu Guang1 , Ning Zhang6 , Hao Xue7 , Haidong Wang1 , Chunfu Yang1 , Zhen Zhang8,* , Bin Zhu1,*
-
View Affiliations Hide AffiliationsAffiliations: 1 School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China 2 China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai, China 3 School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai, China 4 Shanxi Provincial Health Industry Association Service Center, Shaanxi, China 5 Department of Infection Management, Gansu Provincial Hospital, Gansu, China 6 Vanke School of Public Health, Tsinghua University, Beijing, China 7 Stanford Center on China's Economy and Institutions, Stanford University, Stanford, United States 8 Shenzhen Center for Disease Control and Prevention, Shenzhen, China * These authors contributed equally to this work and share last authorship.Bin Zhuzhub6 sustech.edu.cn
-
View Citation Hide Citation
Citation style for this article: Shang Xue, Zhang Ruhao, Zheng Junyao, Luo Yi, Guo Kangle, Zhou Qingqing, Guang Xu, Zhang Ning, Xue Hao, Wang Haidong, Yang Chunfu, Zhang Zhen, Zhu Bin. Global meta-analysis of short-term associations between ambient temperature and pathogen-specific respiratory infections, 2004 to 2023. Euro Surveill. 2025;30(11):pii=2400375. https://doi.org/10.2807/1560-7917.ES.2025.30.11.2400375 Received: 12 Jun 2024; Accepted: 19 Aug 2024
Abstract
Ambient temperature may affect respiratory health, while the temperature sensitivity of respiratory infections may be pathogen-dependent.
We sought to explore pathogen-specific associations between ambient temperature and respiratory infections.
We searched nine databases for a random-effects meta-analysis to pool the relative risk (RR) of respiratory infection by pathogen per 1° C temperature rise, compared to populations unexposed to the same temperature. We conducted pathogen-specific analyses, sensitivity analyses, subgroup analyses and meta-regression.
A total of 137 studies were eligible for meta-analysis. The pooled and single-study estimates revealed that the incidence of respiratory syncytial virus (RR = 0.14; 95% confidence interval (CI): 0.09–0.23), influenza virus (IV) (RR = 0.40; 95% CI: 0.27–0.61), human metapneumovirus (RR = 0.48; 95% CI: 0.32–0.73), human coronavirus (HCoV) (RR = 0.21; 95% CI: 0.07–0.61) and SARS-CoV-2 (RR = 0.52; 95% CI: 0.35–0.78) decreased per 1° C temperature rise, while that of human parainfluenza virus (HPIV) (RR = 2.35; 95% CI: 1.46–3.77), human bocavirus (HBoV) (RR = 1.86; 95% CI: 1.04–3.32) and MERS-CoV (RR = 1.05; 95% CI: 1.04–1.07) increased. The risk of infection was lower for IVA, IVB, HCoV-229E and HCoV-OC43, while HPIV-3, and HBoV-1 were at increased risk. The risk of Streptococcus pyogenes pharyngitis (RR = 0.46; 95% CI: 0.30–0.69) decreased per 1° C temperature rise, while Pseudomonas aeruginosa (RR = 1.04; 95% CI: 1.03–1.05) and Legionella pneumophila infections (RR = 2.69; 95% CI: 1.11–6.53) increased.
Temperature sensitivity of respiratory infections can vary with the specific pathogen type and subtype that causes the infection. As the climatic conditions will become warmer, public health policy makers should act to develop pathogen adaptation strategies.

Article metrics loading...


Full text loading...
References
-
World Health Organization (WHO). Influenza (seasonal). Geneva: WHO; 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
-
Florman AL, McLaren LC. The effect of altitude and weather on the occurrence of outbreaks of respiratory syncytial virus infections. J Infect Dis. 1988;158(6):1401-2. https://doi.org/10.1093/infdis/158.6.1401 PMID: 3198947
-
Chan PW, Chew FT, Tan TN, Chua KB, Hooi PS. Seasonal variation in respiratory syncytial virus chest infection in the tropics. Pediatr Pulmonol. 2002;34(1):47-51. https://doi.org/10.1002/ppul.10095 PMID: 12112797
-
Perin J, Mulick A, Yeung D, Villavicencio F, Lopez G, Strong KL, et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc Health. 2022;6(2):106-15. https://doi.org/10.1016/S2352-4642(21)00311-4 PMID: 34800370
-
Jin X, Ren J, Li R, Gao Y, Zhang H, Li J, et al. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine. 2021;37:100986. https://doi.org/10.1016/j.eclinm.2021.100986 PMID: 34386754
-
Jain N, Lodha R, Kabra SK. Upper respiratory tract infections. Indian J Pediatr. 2001;68(12):1135-8. https://doi.org/10.1007/BF02722930 PMID: 11838568
-
Kardos P, Malek FA. Erkältung – ein Sammelbegriff für akute Infektionen von Nase, Rachen, Kehlkopf und Bronchien. [Common cold - an umbrella term for acute infections of nose, throat, larynx and bronchi]. Pneumologie. 2017;71(4):221-6. German. PMID:27912214 PMID: 27912214
-
Nicholson KG, Kent J, Hammersley V, Cancio E. Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study of disease burden. BMJ. 1997;315(7115):1060-4. https://doi.org/10.1136/bmj.315.7115.1060 PMID: 9366736
-
Heikkinen T, Järvinen A. The common cold. Lancet. 2003;361(9351):51-9. https://doi.org/10.1016/S0140-6736(03)12162-9 PMID: 12517470
-
Lavine JS, Bjornstad ON, Antia R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science. 2021;371(6530):741-5. https://doi.org/10.1126/science.abe6522 PMID: 33436525
-
Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, Gray AP, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221-48. https://doi.org/10.1016/S0140-6736(22)02185-7 PMID: 36423648
-
Mirsaeidi M, Motahari H, Taghizadeh Khamesi M, Sharifi A, Campos M, Schraufnagel DE. Climate change and respiratory infections. Ann Am Thorac Soc. 2016;13(8):1223-30. https://doi.org/10.1513/AnnalsATS.201511-729PS PMID: 27300144
-
Pica N, Bouvier NM. Ambient temperature and respiratory virus infection. Pediatr Infect Dis J. 2014;33(3):311-3. https://doi.org/10.1097/INF.0000000000000235 PMID: 24378933
-
van Loghem JJ. An Epidemiological contribution to the knowledge of the respiratory diseases. J Hyg (Lond). 1928;28(1):33-54. https://doi.org/10.1017/S0022172400009372 PMID: 20474979
-
Fodha I, Vabret A, Trabelsi A, Freymuth F. Epidemiological and antigenic analysis of respiratory syncytial virus in hospitalised Tunisian children, from 2000 to 2002. J Med Virol. 2004;72(4):683-7. https://doi.org/10.1002/jmv.20038 PMID: 14981774
-
Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 2010;8(2):e1000316. https://doi.org/10.1371/journal.pbio.1000316 PMID: 20186267
-
Cox NJ, Subbarao K. Global epidemiology of influenza: past and present. Annu Rev Med. 2000;51(1):407-21. https://doi.org/10.1146/annurev.med.51.1.407 PMID: 10774473
-
Tamerius J, Nelson MI, Zhou SZ, Viboud C, Miller MA, Alonso WJ. Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ Health Perspect. 2011;119(4):439-45. https://doi.org/10.1289/ehp.1002383 PMID: 21097384
-
Finkelman BS, Viboud C, Koelle K, Ferrari MJ, Bharti N, Grenfell BT. Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: viral coexistence and latitudinal gradients. PLoS One. 2007;2(12):e1296. https://doi.org/10.1371/journal.pone.0001296 PMID: 18074020
-
Azziz Baumgartner E, Dao CN, Nasreen S, Bhuiyan MU, Mah-E-Muneer S, Al Mamun A, et al. Seasonality, timing, and climate drivers of influenza activity worldwide. J Infect Dis. 2012;206(6):838-46. https://doi.org/10.1093/infdis/jis467 PMID: 22829641
-
Jaakkola K, Saukkoriipi A, Jokelainen J, Juvonen R, Kauppila J, Vainio O, et al. Decline in temperature and humidity increases the occurrence of influenza in cold climate. Environ Health. 2014;13(1):22. https://doi.org/10.1186/1476-069X-13-22 PMID: 24678699
-
Yan X, Wang Z, Wang X, Zhang X, Wang L, Lu Z, et al. Association between human coronaviruses’ epidemic and environmental factors on a global scale. Environ Sci Pollut Res Int. 2022;29(10):14333-47. https://doi.org/10.1007/s11356-021-16500-y PMID: 34609683
-
Anastasiou OE, Hüsing A, Korth J, Theodoropoulos F, Taube C, Jöckel KH, et al. Seasonality of non-SARS, non-MERS coronaviruses and the impact of meteorological factors. Pathogens. 2021;10(2):187. https://doi.org/10.3390/pathogens10020187 PMID: 33572306
-
Li Y, Wang X, Nair H. Global seasonality of human seasonal coronaviruses: a clue for postpandemic circulating season of severe acute respiratory syndrome coronavirus 2? J Infect Dis. 2020;222(7):1090-7. https://doi.org/10.1093/infdis/jiaa436 PMID: 32691843
-
Mecenas P, Bastos RTDRM, Vallinoto ACR, Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One. 2020;15(9):e0238339. https://doi.org/10.1371/journal.pone.0238339 PMID: 32946453
-
Merow C, Urban MC. Seasonality and uncertainty in global COVID-19 growth rates. Proc Natl Acad Sci USA. 2020;117(44):27456-64. https://doi.org/10.1073/pnas.2008590117 PMID: 33051302
-
Ye D, Yang X, Zhang Q. An analysis of the relationship between SARS and meteorological conditions in Beijing area. Qixiang. 2003;29(10):42-5. https://doi.org/10.7519/j.issn.1000-0526.2003.10.010
-
Yang ZC, Du L, Wang M, Xu JM, Tan WY, Xu YC, et al. Analysis on effect of air pressure and air temperature on outbreak and epidemic of SARS. Chin J Publ Health. 2003;19:1028-30.
-
Pica N, Bouvier NM. Environmental factors affecting the transmission of respiratory viruses. Curr Opin Virol. 2012;2(1):90-5. https://doi.org/10.1016/j.coviro.2011.12.003 PMID: 22440971
-
Tang JW, Loh TP. Correlations between climate factors and incidence--a contributor to RSV seasonality. Rev Med Virol. 2014;24(1):15-34. https://doi.org/10.1002/rmv.1771 PMID: 24421259
-
Valsamatzi-Panagiotou A, Penchovsky R. Environmental factors influencing the transmission of the coronavirus 2019: a review. Environ Chem Lett. 2022;20(3):1603-10. https://doi.org/10.1007/s10311-022-01418-9 PMID: 35221835
-
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(71):n71. https://doi.org/10.1136/bmj.n71 PMID: 33782057
-
Rooney AA, Boyles AL, Wolfe MS, Bucher JR, Thayer KA. Systematic review and evidence integration for literature-based environmental health science assessments. Environ Health Perspect. 2014;122(7):711-8. https://doi.org/10.1289/ehp.1307972 PMID: 24755067
-
Janssens ACJW, Gwinn M, Brockman JE, Powell K, Goodman M. Novel citation-based search method for scientific literature: a validation study. BMC Med Res Methodol. 2020;20(1):25. https://doi.org/10.1186/s12874-020-0907-5 PMID: 32028894
-
Razanajatovo NH, Richard V, Hoffmann J, Reynes JM, Razafitrimo GM, Randremanana RV, et al. Viral etiology of influenza-like illnesses in Antananarivo, Madagascar, July 2008 to June 2009. PLoS One. 2011;6(3):e17579. https://doi.org/10.1371/journal.pone.0017579 PMID: 21390235
-
The World Bank. World Bank country and lending groups. Washington D.C.: The World Bank; 2020. [Accessed: 20 Feb 2025]. Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
-
Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11(5):1633-44. https://doi.org/10.5194/hess-11-1633-2007
-
Wagatsuma K, Koolhof IS, Saito R. Nonlinear and multidelayed effects of meteorological drivers on human respiratory syncytial virus infection in Japan. Viruses. 2023;15(9):1914. https://doi.org/10.3390/v15091914 PMID: 37766320
-
Wagatsuma K, Koolhof IS, Saito R. The relative roles of ambient temperature and mobility patterns in shaping the transmission heterogeneity of SARS-CoV-2 in Japan. Viruses. 2022;14(10):2232. https://doi.org/10.3390/v14102232 PMID: 36298787
-
Solanes A, Laredo C, Guasp M, Fullana MA, Fortea L, Garcia-Olivé I, et al. No Effects of Meteorological Factors on the SARS-CoV-2 Infection Fatality Rate. Biomed Environ Sci. 2021;34(11):871-80. PMID: 34955147
-
Pitzer VE, Viboud C, Alonso WJ, Wilcox T, Metcalf CJ, Steiner CA, et al. Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States. PLoS Pathog. 2015;11(1):e1004591. https://doi.org/10.1371/journal.ppat.1004591 PMID: 25569275
-
Huang P, Yu SY, Chen Q, Zheng HY, Hu J, Luo QH, Nie J. Study on the relationship between SARS prevalence and climate change in Guangdong Province. Chin J Zoonoses. 2004;24(8):714-16. https://doi.org/10.3969/j.issn.1002-2694.2004.08.017
-
Liu J, Varghese BM, Hansen A, Zhang Y, Driscoll T, Morgan G, et al. Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet Health. 2022;6(6):e484-95. https://doi.org/10.1016/S2542-5196(22)00117-6 PMID: 35709806
-
Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97-111. https://doi.org/10.1002/jrsm.12 PMID: 26061376
-
Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005;30(3):261-93. https://doi.org/10.3102/10769986030003261
-
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-60. https://doi.org/10.1136/bmj.327.7414.557 PMID: 12958120
-
Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10(10):ED000142. https://doi.org/10.1002/14651858.ED000142 PMID: 31643080
-
du Prel JB, Puppe W, Gröndahl B, Knuf M, Weigl JA, Schaaff F, et al. Are meteorological parameters associated with acute respiratory tract infections? Clin Infect Dis. 2009;49(6):861-8. https://doi.org/10.1086/605435 PMID: 19663691
-
Huang J, Rong J, Kong D, Liu X, Huang J, Lin H, et al. The etiology of community acquired pneumonia among hospitalized children in Zhongshan and its relation with climate parameters. Chin Prev Med.2019;20(3).
-
Chan PK, Mok HY, Lee TC, Chu IM, Lam WY, Sung JJ. Seasonal influenza activity in Hong Kong and its association with meteorological variations. J Med Virol. 2009;81(10):1797-806. https://doi.org/10.1002/jmv.21551 PMID: 19697414
-
Welliver R. The relationship of meteorological conditions to the epidemic activity of respiratory syncytial virus. Paediatr Respir Rev. 2009;10(Suppl 1):6-8. https://doi.org/10.1016/S1526-0542(09)70004-1 PMID: 19651390
-
Darniot M, Pitoiset C, Millière L, Aho-Glélé LS, Florentin E, Bour JB, et al. Different meteorological parameters influence metapneumovirus and respiratory syncytial virus activity. J Clin Virol. 2018;104:77-82. https://doi.org/10.1016/j.jcv.2018.05.002 PMID: 29763837
-
Sharma A, Preece B, Swann H, Fan X, McKenney RJ, Ori-McKenney KM, et al. Structural stability of SARS-CoV-2 virus like particles degrades with temperature. Biochem Biophys Res Commun. 2021;534:343-6. https://doi.org/10.1016/j.bbrc.2020.11.080 PMID: 33272571
-
Price RHM, Graham C, Ramalingam S. Association between viral seasonality and meteorological factors. Sci Rep. 2019;9(1):929. https://doi.org/10.1038/s41598-018-37481-y PMID: 30700747
-
Yin FH, Knight E Jr. In vivo and in vitro synthesis of human rhinovirus type 2 ribonucleic acid. J Virol. 1972;10(1):93-8. https://doi.org/10.1128/jvi.10.1.93-98.1972 PMID: 4339200
-
Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L, Zhao H, et al. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci USA. 2015;112(3):827-32. https://doi.org/10.1073/pnas.1411030112 PMID: 25561542
-
Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007;3(10):1470-6. https://doi.org/10.1371/journal.ppat.0030151 PMID: 17953482
-
Xu L, Bao L, Deng W, Zhu H, Chen T, Lv Q, et al. Correction to: The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus. Virol J. 2020;17(1):83. https://doi.org/10.1186/s12985-020-01356-4 PMID: 32580773
-
Xu XU, Chu D, Peng P, Zhang X, Yan L, Yu M, et al. Animal model of influenza virus. J Path Biol.2022;17(8):982-6.
-
Bisht K, Moore JL, Caprioli RM, Skaar EP, Wakeman CA. Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms Microbiomes. 2021;7(1):22. https://doi.org/10.1038/s41522-021-00194-8 PMID: 33727555
-
Bisht K, Luecke AR, Wakeman CA. Temperature-specific adaptations and genetic requirements in a biofilm formed by Pseudomonas aeruginosa. Front Microbiol. 2023;13:1032520. https://doi.org/10.3389/fmicb.2022.1032520 PMID: 36687584
-
Fields BS, Benson RF, Besser RE. Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev. 2002;15(3):506-26. https://doi.org/10.1128/CMR.15.3.506-526.2002 PMID: 12097254
-
Katz SM, Hammel JM. The effect of drying, heat, and pH on the survival of Legionella pneumophila. Ann Clin Lab Sci. 1987;17(3):150-6. PMID: 3606021
-
Chen Xiaofang TQ, Zhang N, Ge H. Research progress in the type II secretion system of Legionella pneumophila and its substrates. Wei Sheng Wu Xue Tong Bao. 2022;49(9):3906-18.
-
Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Migliaccio CA, et al. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci USA. 2001;98(18):10416-21. https://doi.org/10.1073/pnas.191267598 PMID: 11517341
-
Pandya U, Allen CA, Watson DA, Niesel DW. Global profiling of Streptococcus pneumoniae gene expression at different growth temperatures. Gene. 2005;360(1):45-54. https://doi.org/10.1016/j.gene.2005.06.023 PMID: 16154298
-
Saito R, Matsuoka S, Fujinami Y, Nonaka S, Ichinose S, Kubota T, et al. Role of Moraxella catarrhalis outer membrane protein CD in bacterial cell morphology and autoaggregation. Res Microbiol. 2013;164(3):236-43. https://doi.org/10.1016/j.resmic.2012.12.005 PMID: 23257176
-
Li Y, Reeves RM, Wang X, Bassat Q, Brooks WA, Cohen C, et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Health. 2019;7(8):e1031-45. https://doi.org/10.1016/S2214-109X(19)30264-5 PMID: 31303294
-
van Doremalen N, Bushmaker T, Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill. 2013;18(38):20590. https://doi.org/10.2807/1560-7917.ES2013.18.38.20590 PMID: 24084338
-
Mizuta K, Abiko C, Aoki Y, Ikeda T, Itagaki T, Katsushima F, et al. Epidemiology of parainfluenza virus types 1, 2 and 3 infections based on virus isolation between 2002 and 2011 in Yamagata, Japan. Microbiol Immunol. 2012;56(12):855-8. https://doi.org/10.1111/j.1348-0421.2012.00507.x PMID: 22946520
-
Fry AM, Curns AT, Harbour K, Hutwagner L, Holman RC, Anderson LJ. Seasonal trends of human parainfluenza viral infections: United States, 1990-2004. Clin Infect Dis. 2006;43(8):1016-22. https://doi.org/10.1086/507638 PMID: 16983614
-
Tyrrell DA, Bynoe ML. Some further virus isolations from common colds. BMJ. 1961;1(5223):393-7. https://doi.org/10.1136/bmj.1.5223.393 PMID: 13778900
-
Seifert M, van Nies P, Papini FS, Arnold JJ, Poranen MM, Cameron CE, et al. Temperature controlled high-throughput magnetic tweezers show striking difference in activation energies of replicating viral RNA-dependent RNA polymerases. Nucleic Acids Res. 2020;48(10):5591-602. https://doi.org/10.1093/nar/gkaa233 PMID: 32286652
-
Shaw Stewart PD, Bach JL. Temperature dependent viral tropism: understanding viral seasonality and pathogenicity as applied to the avoidance and treatment of endemic viral respiratory illnesses. Rev Med Virol. 2022;32(1):e2241. https://doi.org/10.1002/rmv.2241 PMID: 33942417
-
Ference RS, Leonard JA, Stupak HD. Physiologic model for seasonal patterns in flu transmission. Laryngoscope. 2020;130(2):309-13. https://doi.org/10.1002/lary.27910 PMID: 30865297
-
Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, et al. Airborne transmission of respiratory viruses. Science. 2021;373(6558):eabd9149. https://doi.org/10.1126/science.abd9149 PMID: 34446582
-
Weber TP, Stilianakis NI. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect. 2008;57(5):361-73. https://doi.org/10.1016/j.jinf.2008.08.013 PMID: 18848358
-
Dong Z, Ma J, Qiu J, Ren Q, Shan Q, Duan X, et al. Airborne fine particles drive H1N1 viruses deep into the lower respiratory tract and distant organs. Sci Adv. 2023;9(23):eadf2165. https://doi.org/10.1126/sciadv.adf2165 PMID: 37294770
-
World Health Organization (WHO). Vaccines and immunization. Geneva: WHO. [Accessed: 21 Feb 2025]. Available from: https://www.who.int/health-topics/vaccines-and-immunization#tab=tab_1
-
Boddington NL, Pearson I, Whitaker H, Mangtani P, Pebody RG. Effectiveness of influenza vaccination in preventing hospitalization due to influenza in children: a systematic review and meta-analysis. Clin Infect Dis. 2021;73(9):1722-32. https://doi.org/10.1093/cid/ciab270 PMID: 33772586
-
Jefferies JM, Macdonald E, Faust SN, Clarke SC. 13-valent pneumococcal conjugate vaccine (PCV13). Hum Vaccin. 2011;7(10):1012-8. https://doi.org/10.4161/hv.7.10.16794 PMID: 21941097
-
United States Food and Drug Administration (FDA). Pneumovax® 23 (pneumococcal vaccine polyvalent). Full prescribing information. Whitehouse Station: Merck & Co; 2021. Available from: https://www.fda.gov/media/80547/download
-
Centers for Disease Control and Prevention (CDC). Pneumococcal vaccination. Atlanta: CDC. [Accessed: 21 Feb 2025]. Available from: https://www.cdc.gov/pneumococcal/vaccines/index.html
-
World Health Organization (WHO). Coronavirus disease (COVID-19): Vaccines and vaccine safety. Geneva: WHO: 2024. Available from: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-vaccines
-
United States Food and Drug Administration (FDA). FDA approves first respiratory syncytial virus (RSV) vaccine. Arexvy approved for individuals 60 years of age and older. Silver Spring: FDA; 2023. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-respiratory-syncytial-virus-rsv-vaccine
-
Broberg EK, Nohynek H. Respiratory syncytial virus infections - recent developments providing promising new tools for disease prevention. Euro Surveill. 2023;28(49):2300686. https://doi.org/10.2807/1560-7917.ES.2023.28.49.2300686 PMID: 38062943
-
World Health Organization (WHO). Haemophilus influenzae type b (Hib). Geneva: WHO; 2017. Available from: https://www.who.int/europe/news-room/fact-sheets/item/haemophilus-influenzae-type-b-%28hib%29
-
Ross I, Bick S, Ayieko P, Dreibelbis R, Wolf J, Freeman MC, et al. Effectiveness of handwashing with soap for preventing acute respiratory infections in low-income and middle-income countries: a systematic review and meta-analysis. Lancet. 2023;401(10389):1681-90. https://doi.org/10.1016/S0140-6736(23)00021-1 PMID: 37121242
-
Young JJ, Mutch H, Rose AMC, Evans JMM, McMenamin J, Murray J, et al. . Enhanced surveillance of hospitalized COVID-19 patients in Europe: an evaluation of the I-MOVE-COVID-19 surveillance network. Eur J Public Health. 2024;34(1):181-9. https://doi.org/10.1093/eurpub/ckad185 PMID: 37889597
-
Public Health England (PHE). Cold Weather Plan for England Making the case: why long-term strategic planning for cold weather is essential to health and wellbeing. London; PHE. [Accessed: 25 Feb 2025]. Available from: https://assets.publishing.service.gov.uk/media/5a801341e5274a2e8ab4e0a4/CWP_Making_the_Case_2014_FINAL.pdf
-
United Kingdom Health Security Agency (UKHSA). The Cold Weather Plan for England: Protecting health and reducing harm from cold weather. London; UKHSA. [Accessed: 25 Feb 2025]. Available from: https://www.gloshospitals.nhs.uk/media/documents/UKHSA_Cold_Weather_Plan_for_England.pdf
-
Boeckmann M, Zeeb H. Using a social justice and health framework to assess European climate change adaptation strategies. Int J Environ Res Public Health. 2014;11(12):12389-411. https://doi.org/10.3390/ijerph111212389 PMID: 25464133
-
Kramer SC, Pei S, Shaman J. Forecasting influenza in Europe using a metapopulation model incorporating cross-border commuting and air travel. PLOS Comput Biol. 2020;16(10):e1008233. https://doi.org/10.1371/journal.pcbi.1008233 PMID: 33052907

Data & Media loading...
Supplementary data
-
-
Supplement
-
