1887
Perspective Open Access
Like 0

Abstract

Shiga toxin-producing (STEC) is a zoonotic pathogen associated with illness ranging from mild diarrhoea to haemolytic uremic syndrome (HUS) or even death. Cross-sectoral data sharing provides an opportunity to gain insight in reservoirs and sources of human infections and starting points for pro-active measures. Nevertheless, phylogenetic clustering of STEC strains from animals, food and human cases is low in the Dutch surveillance system. This is partly due to the substantial contribution of international travel and person-to-person spread in the STEC epidemiology. Furthermore, some STEC strains causing disease in humans may have a human reservoir. Although the main reservoirs and sources are included in the Dutch monitoring programmes, some animals and food products may be under-recognised as potential sources of human infections. More effort in investigating the role of other reservoirs beyond the well-known can provide a better understanding on STEC ecology in general, improving surveillance and source attribution, and ultimately provide better guidance for monitoring and source finding. This also implies having good diagnostics in place and isolates available for typing. Therefore, on the human side of the surveillance, the decision has been made to start isolating STEC at national level.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.49.2400264
2024-12-05
2024-12-12
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.49.2400264
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/49/eurosurv-29-49-4.html?itemId=/content/10.2807/1560-7917.ES.2024.29.49.2400264&mimeType=html&fmt=ahah

References

  1. Karmali MA, Gannon V, Sargeant JM. Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol. 2010;140(3-4):360-70.  https://doi.org/10.1016/j.vetmic.2009.04.011  PMID: 19410388 
  2. Page AV, Liles WC. Enterohemorrhagic Escherichia coli infections and the hemolytic-uremic syndrome. Med Clin North Am. 2013;97(4):681-95, xi.  https://doi.org/10.1016/j.mcna.2013.04.001  PMID: 23809720 
  3. Mughini-Gras L, van Pelt W, van der Voort M, Heck M, Friesema I, Franz E. Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of source-specific risk factors, The Netherlands (2010-2014). Zoonoses Public Health. 2018;65(1):e8-22.  https://doi.org/10.1111/zph.12403  PMID: 28921940 
  4. Augustin J-C, Kooh P, Mughini-Gras L, Guillier L, Thebault A, Audiat-Perrin F, et al. Risk factors for sporadic infections caused by Shiga toxin-producing Escherichia coli: a systematic review and meta-analysis. Microb Risk Anal. 2021;17:100117.  https://doi.org/10.1016/j.mran.2020.100117 
  5. Friesema IH, Schotsborg M, Heck ME, Van Pelt W. Risk factors for sporadic Shiga toxin-producing Escherichia coli O157 and non-O157 illness in The Netherlands, 2008-2012, using periodically surveyed controls. Epidemiol Infect. 2015;143(7):1360-7.  https://doi.org/10.1017/S0950268814002349  PMID: 25195737 
  6. Jenkins C, Dallman TJ, Grant KA. Impact of whole genome sequencing on the investigation of food-borne outbreaks of Shiga toxin-producing Escherichia coli serogroup O157:H7, England, 2013 to 2017. Euro Surveill. 2019;24(4):1800346.  https://doi.org/10.2807/1560-7917.ES.2019.24.4.1800346  PMID: 30696532 
  7. Pietzka A, Allerberger F, Murer A, Lennkh A, Stöger A, Cabal Rosel A, et al. Whole genome sequencing based surveillance of L. monocytogenes for early detection and investigations of listeriosis outbreaks. Front Public Health. 2019;7:139.  https://doi.org/10.3389/fpubh.2019.00139  PMID: 31214559 
  8. McLauchlin J, Aird H, Amar C, Barker C, Dallman T, Elviss N, et al. Listeria monocytogenes in cooked chicken: detection of an outbreak in the UK (2016-2017) and analysis of L. monocytogenes from unrelated monitoring of foods (2013-2017). J Food Prot. 2020;83(12):2041-52.  https://doi.org/10.4315/JFP-20-188 
  9. Schjørring S, Gillesberg Lassen S, Jensen T, Moura A, Kjeldgaard JS, Müller L, et al. Cross-border outbreak of listeriosis caused by cold-smoked salmon, revealed by integrated surveillance and whole genome sequencing (WGS), Denmark and France, 2015 to 2017. Euro Surveill. 2017;22(50):17-00762.  https://doi.org/10.2807/1560-7917.ES.2017.22.50.17-00762  PMID: 29258647 
  10. Suominen K, Jaakola S, Salmenlinna S, Simola M, Wallgren S, Hakkinen M, et al. Invasive listeriosis in Finland: surveillance and cluster investigations, 2011-2021. Epidemiol Infect. 2023;151:e118.  https://doi.org/10.1017/S0950268823001073  PMID: 37424309 
  11. Friesema IHM, Verbart CC, van der Voort M, Stassen J, Lanzl MI, van der Weijden C, et al. Combining whole genome sequencing data from human and non-human sources: tackling Listeria monocytogenes outbreaks. Microorganisms. 2023;11(11):2617.  https://doi.org/10.3390/microorganisms11112617  PMID: 38004629 
  12. Brandwagt D, van den Wijngaard C, Tulen AD, Mulder AC, Hofhuis A, Jacobs R, et al. Outbreak of Salmonella Bovismorbificans associated with the consumption of uncooked ham products, the Netherlands, 2016 to 2017. Euro Surveill. 2018;23(1):17-00335.  https://doi.org/10.2807/1560-7917.ES.2018.23.1.17-00335  PMID: 29317018 
  13. Inns T, Ashton PM, Herrera-Leon S, Lighthill J, Foulkes S, Jombart T, et al. Prospective use of whole genome sequencing (WGS) detected a multi-country outbreak of Salmonella Enteritidis. Epidemiol Infect. 2017;145(2):289-98. PMID: 27780484 
  14. Pijnacker R, Dallman TJ, Tijsma ASL, Hawkins G, Larkin L, Kotila SM, et al. An international outbreak of Salmonella enterica serotype Enteritidis linked to eggs from Poland: a microbiological and epidemiological study. Lancet Infect Dis. 2019;19(7):778-86.  https://doi.org/10.1016/S1473-3099(19)30047-7  PMID: 31133519 
  15. Nouws S, Verhaegen B, Denayer S, Crombé F, Piérard D, Bogaerts B, et al. Transforming Shiga toxin-producing Escherichia coli surveillance through whole genome sequencing in food safety practices. Front Microbiol. 2023;14:1204630.  https://doi.org/10.3389/fmicb.2023.1204630  PMID: 37520372 
  16. Friesema IHM, Kuiling S, Igloi Z, Franz E. Optimization of notification criteria for Shiga toxin-producing Escherichia coli surveillance, the Netherlands. Emerg Infect Dis. 2021;27(1):258-61.  https://doi.org/10.3201/eid2701.200339  PMID: 33350915 
  17. Netherlands Food and Consumer Product Safety Authority (NVWA). Multi Annual National Control Plan (MANCP). Utrecht: NVWA [Accessed: 8 Apr 2024]. Available from: https://english.nvwa.nl/about-us/multi-annual-national-control-plan-mancp
  18. Netherlands Food and Consumer Product Safety Authority (NVWA). MNCP Meerjarig Nationaal Controleplan 2023-2025. [MNCP Multi-annual National Control Plan 2023-2025]. Utrecht: NVWA; 2023. Dutch. Available from: https://www.nvwa.nl/documenten/nvwa/organisatie/mancp-jaarverslagen/publicaties/index
  19. Kintz E, Brainard J, Hooper L, Hunter P. Transmission pathways for sporadic Shiga-toxin producing E. coli infections: A systematic review and meta-analysis. Int J Hyg Environ Health. 2017;220(1):57-67.  https://doi.org/10.1016/j.ijheh.2016.10.011  PMID: 27842895 
  20. Kintz E, Brainard J, Vanderes M, Vivancos R, Byrne L, Butt S, et al. Animal and environmental risk factors for sporadic Shiga toxin-producing Escherichia coli (STEC) infection in England: a case control study for O157, O26 and other STEC serotypes. Pathog Glob Health. 2023;117(7):655-63.  https://doi.org/10.1080/20477724.2023.2197672  PMID: 37016510 
  21. Baker KS, Dallman TJ, Thomson NR, Jenkins C. An outbreak of a rare Shiga-toxin-producing Escherichia coli serotype (O117:H7) among men who have sex with men. Microb Genom. 2018;4(7):e000181.  https://doi.org/10.1099/mgen.0.000181  PMID: 29781799 
  22. Simms I, Gilbart VL, Byrne L, Jenkins C, Adak GK, Hughes G, et al. Identification of verocytotoxin-producing Escherichia coli O117:H7 in men who have sex with men, England, November 2013 to August 2014. Euro Surveill. 2014;19(43):20946.  https://doi.org/10.2807/1560-7917.ES2014.19.43.20946  PMID: 25375900 
  23. Santos ACM, Santos FF, Silva RM, Gomes TAT. Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Front Cell Infect Microbiol. 2020;10:339.  https://doi.org/10.3389/fcimb.2020.00339  PMID: 32766163 
  24. Coipan CE, Friesema IH, van den Beld MJC, Bosch T, Schlager S, van der Voort M, et al. Sporadic occurrence of enteroaggregative Shiga toxin-producing Escherichia coli O104:H4 similar to 2011 outbreak strain. Emerg Infect Dis. 2022;28(9):1890-4.  https://doi.org/10.3201/eid2809.220037  PMID: 35997633 
  25. van Hoek AHAM, van Veldhuizen JNJ, Friesema I, Coipan C, Rossen JWA, Bergval IL, et al. Comparative genomics reveals a lack of evidence for pigeons as a main source of stx2f-carrying Escherichia coli causing disease in humans and the common existence of hybrid Shiga toxin-producing and enteropathogenic E. coli pathotypes. BMC Genomics. 2019;20(1):271.  https://doi.org/10.1186/s12864-019-5635-z  PMID: 30953471 
  26. Kim JS, Lee MS, Kim JH. Recent updates on outbreaks of Shiga toxin-producing Escherichia coli and its potential reservoirs. Front Cell Infect Microbiol. 2020;10:273.  https://doi.org/10.3389/fcimb.2020.00273  PMID: 32582571 
  27. Silva BN, Cadavez V, Teixeira JA, Gonzales-Barron U. Meta-analysis of the incidence of foodborne pathogens in vegetables and fruits from retail establishments in Europe. Curr Opin Food Sci. 2017;18:21-8.  https://doi.org/10.1016/j.cofs.2017.10.001 
  28. Buchholz U, Bernard H, Werber D, Böhmer MM, Remschmidt C, Wilking H, et al. German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med. 2011;365(19):1763-70.  https://doi.org/10.1056/NEJMoa1106482  PMID: 22029753 
  29. Pires SM, Majowicz S, Gill A, Devleesschauwer B. Global and regional source attribution of Shiga toxin-producing Escherichia coli infections using analysis of outbreak surveillance data. Epidemiol Infect. 2019;147:e236.  https://doi.org/10.1017/S095026881900116X  PMID: 31364563 
  30. Boss R, Hummerjohann J. Whole genome sequencing characterization of Shiga toxin-producing Escherichia coli isolated from flour from Swiss retail markets. J Food Prot. 2019;82(8):1398-404.  https://doi.org/10.4315/0362-028X.JFP-18-593  PMID: 31335182 
  31. Kindle P, Nüesch-Inderbinen M, Cernela N, Stephan R. Detection, isolation, and characterization of Shiga toxin-producing Escherichia coli in flour. J Food Prot. 2019;82(1):164-7.  https://doi.org/10.4315/0362-028X.JFP-18-256  PMID: 30707053 
  32. Projahn M, Lamparter MC, Ganas P, Goehler A, Lorenz-Wright SC, Maede D, et al. Genetic diversity and pathogenic potential of Shiga toxin-producing Escherichia coli (STEC) derived from German flour. Int J Food Microbiol. 2021;347:109197.  https://doi.org/10.1016/j.ijfoodmicro.2021.109197  PMID: 33895597 
  33. Söderlund R, Flink C, Aspán A, Eriksson E. Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic E. coli (aEPEC) in Swedish retail wheat flour. Access Microbiol. 2023;5(5):acmi000577.v3.  https://doi.org/10.1099/acmi.0.000577.v3  PMID: 37323947 
  34. Davies RH, Lawes JR, Wales AD. Raw diets for dogs and cats: a review, with particular reference to microbiological hazards. J Small Anim Pract. 2019;60(6):329-39.  https://doi.org/10.1111/jsap.13000  PMID: 31025713 
  35. Kaindama L, Jenkins C, Aird H, Jorgensen F, Stoker K, Byrne L. A cluster of Shiga toxin-producing Escherichia coli O157:H7 highlights raw pet food as an emerging potential source of infection in humans. Epidemiol Infect. 2021;149:e124.  https://doi.org/10.1017/S0950268821001072  PMID: 33955833 
  36. Treier A, Stephan R, Stevens MJA, Cernela N, Nüesch-Inderbinen M. High occurrence of Shiga toxin-producing Escherichia coli in raw meat-based diets for companion animals-A public health issue. Microorganisms. 2021;9(8):1556.  https://doi.org/10.3390/microorganisms9081556  PMID: 34442635 
/content/10.2807/1560-7917.ES.2024.29.49.2400264
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error