-
Escherichia coli from six European countries reveals differences in profile and distribution of critical antimicrobial resistance determinants within One Health compartments, 2013 to 2020
- Håkon P Kaspersen1,* , Michael SM Brouwer2,* , Javier Nunez-Garcia3,* , Ingrid Cárdenas-Rey2 , Manal AbuOun3 , Nicholas Duggett3 , Nicholas Ellaby4 , Jose Delgado-Blas5 , Jens A Hammerl6 , Maria Getino7 , Carlos Serna5 , Thierry Naas8 , Kees T Veldman2 , Alex Bossers2 , Marianne Sunde1 , Solveig S Mo1 , Silje B Jørgensen9 , Matthew Ellington4 , Bruno Gonzalez-Zorn5 , Roberto La Ragione7,10 , Philippe Glaser11 , Muna F Anjum3
-
View Affiliations Hide AffiliationsAffiliations: 1 Norwegian Veterinary Institute, Section for Food Safety and Animal Health Research, Ås, Norway 2 Wageningen Bioveterinary Research part of Wageningen University and Research, Department of Bacteriology, Host-Pathogen interactions and Diagnostic Development, Lelystad, The Netherlands 3 Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom 4 United Kingdom Health Security Agency, London, United Kingdom 5 Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain 6 Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany 7 School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom 8 Bacteriology-Hygiene unit, Hopital Bicêtre, Assistance Publique-Hopitaux De Paris, University Paris-Saclay, Paris, France 9 Department for Microbiology and Infection Control, Department for Emergency Medicine, Akershus University Hospital, Lørenskog, Norway 10 School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom 11 Ecology and evolution of antibiotic resistance Unit, Institut Pasteur, Université Paris Cité, Paris, France* These authors contributed equally to the work and share first authorship.Correspondence:Muna Anjummuna.anjum apha.co.uk
-
View Citation Hide Citation
Citation style for this article: Kaspersen Håkon P, Brouwer Michael SM, Nunez-Garcia Javier, Cárdenas-Rey Ingrid, AbuOun Manal, Duggett Nicholas, Ellaby Nicholas, Delgado-Blas Jose, Hammerl Jens A, Getino Maria, Serna Carlos, Naas Thierry, Veldman Kees T, Bossers Alex, Sunde Marianne, Mo Solveig S, Jørgensen Silje B, Ellington Matthew, Gonzalez-Zorn Bruno, La Ragione Roberto, Glaser Philippe, Anjum Muna F. Escherichia coli from six European countries reveals differences in profile and distribution of critical antimicrobial resistance determinants within One Health compartments, 2013 to 2020. Euro Surveill. 2024;29(47):pii=2400295. https://doi.org/10.2807/1560-7917.ES.2024.29.47.2400295 Received: 14 May 2024; Accepted: 07 Oct 2024
Abstract
Antimicrobial resistance (AMR) is a global threat. Monitoring using an integrated One Health approach is essential to detect changes in AMR occurrence.
We aimed to detect AMR genes in pathogenic and commensal Escherichia coli collected 2013–2020 within monitoring programmes and research from food animals, food (fresh retail raw meat) and humans in six European countries, to compare vertical and horizontal transmission.
We whole genome sequenced (WGS) 3,745 E. coli isolates, detected AMR genes using ResFinder and performed phylogenetic analysis to determine isolate relatedness and transmission. A BLASTn-based bioinformatic method compared draft IncI1 genomes to conserved plasmid references from Europe.
Resistance genes to medically important antimicrobials (MIA) such as extended-spectrum cephalosporins (ESC) were widespread but predicted resistance to MIAs authorised for human use (carbapenem, tigecycline) was detected only in two human and three cattle isolates. Phylogenetic analysis clustered E. coli according to phylogroups; commensal animal isolates showed greater diversity than those from human patients. Only 18 vertical animal-food and human-animal transmission events of E. coli clones were detected. However, IncI1 plasmids from different sources and/or countries carrying resistance to ESCs were conserved and widely distributed, although these variants were rarely detected in human pathogens.
Using WGS we demonstrated AMR is driven vertically and horizontally. Human clinical isolates were more closely related, but their IncI1 plasmids were more diverse, while animal or food isolates were less similar with more conserved IncI1 plasmids. These differences likely arose from variations in selective pressure, influencing AMR evolution and transmission.
Article metrics loading...
Full text loading...
References
-
World Health Organization (WHO). WHO List of Medically Important Antimicrobials: a risk management tool for mitigating antimicrobial resistance due to non-human use. Geneva; WHO: 8 Feb 2024. Available from: https://cdn.who.int/media/docs/default-source/gcp/who-mia-list-2024-lv.pdf?sfvrsn=3320dd3d_2
-
Mendelson M, Sharland M, Mpundu M. Antibiotic resistance: calling time on the ‘silent pandemic’. JAC Antimicrob Resist. 2022;4(2):dlac016. https://doi.org/10.1093/jacamr/dlac016 PMID: 35310572
-
Ludden C, Raven KE, Jamrozy D, Gouliouris T, Blane B, Coll F, et al. One health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. MBio. 2019;10(1):e02693-18. https://doi.org/10.1128/mBio.02693-18 PMID: 30670621
-
Peng Z, Maciel-Guerra A, Baker M, Zhang X, Hu Y, Wang W, et al. Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. PLOS Comput Biol. 2022;18(3):e1010018. https://doi.org/10.1371/journal.pcbi.1010018 PMID: 35333870
-
European Commission (EC). Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing Implementing Decision 2013/652/EU. Brussels: EC; 19 Nov 2020. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2020.387.01.0008.01.ENG
-
Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, Alpuche-Aranda CM. Antimicrobial resistance: One Health approach. Vet World. 2022;15(3):743-9. https://doi.org/10.14202/vetworld.2022.743-749 PMID: 35497962
-
Veterinary Medicines Directorate (VMD). UK Veterinary Antibiotic Resistance and Sales Surveillance Report (UK-VARSS 2021). Addlestone: VMD; 8 Nov 2022. Available from: https://assets.publishing.service.gov.uk/media/63a41fd78fa8f53915365431/FOR_PUBLICATION_-_UK-VARSS_2021_Main_Report__Final_v3_-accessible.pdf
-
European Commission (EC). Regulation 1831/2003/EC on additives for use in animal nutrition, Brussels: EC; 22 Sep 2003. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:268:0029:0043:EN:PDF
-
European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA) and European Medicines Agency (EMA). Antimicrobial consumption and resistance in bacteria from humans and animals: third joint inter-agency report on integrated analysis of antimicrobial agent consumption and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA: JIACRA III 2016-2018.Stockholm: ECDC, Parma: EFSA and Amsterdam: EMA; 2021. Available from: https://data.europa.eu/doi/10.2900/056892
-
European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report for 2021. Stockholm: ECDC; 17 Nov 2022. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021
-
Martelli F, AbuOun M, Cawthraw S, Storey N, Turner O, Ellington M, et al. Detection of the transferable tigecycline resistance gene tet(X4) in Escherichia coli from pigs in the United Kingdom. J Antimicrob Chemother. 2022;77(3):846-8. https://doi.org/10.1093/jac/dkab439 PMID: 34897485
-
Duggett NA, Randall LP, Horton RA, Lemma F, Kirchner M, Nunez-Garcia J, et al. Molecular epidemiology of isolates with multiple mcr plasmids from a pig farm in Great Britain: the effects of colistin withdrawal in the short and long term. J Antimicrob Chemother. 2018;73(11):3025-33. https://doi.org/10.1093/jac/dky292 PMID: 30124905
-
Duggett N, AbuOun M, Randall L, Horton R, Lemma F, Rogers J, et al. The importance of using whole genome sequencing and extended spectrum beta-lactamase selective media when monitoring antimicrobial resistance. Sci Rep. 2020;10(1):19880. https://doi.org/10.1038/s41598-020-76877-7 PMID: 33199763
-
Nunez-Garcia J, AbuOun M, Storey N, Brouwer MS, Delgado-Blas JF, Mo SS, et al. Harmonisation of in-silico next-generation sequencing based methods for diagnostics and surveillance. Sci Rep. 2022;12(1):14372. https://doi.org/10.1038/s41598-022-16760-9 PMID: 35999234
-
Duggett N, Ellington MJ, Hopkins KL, Ellaby N, Randall L, Lemma F, et al. Detection in livestock of the human pandemic Escherichia coli ST131 fimH30(R) clone carrying blaCTX-M-27. J Antimicrob Chemother. 2021;76(1):263-5. https://doi.org/10.1093/jac/dkaa407 PMID: 33068401
-
Zamudio R, Boerlin P, Beyrouthy R, Madec JY, Schwarz S, Mulvey MR, et al. Dynamics of extended-spectrum cephalosporin resistance genes in Escherichia coli from Europe and North America. Nat Commun. 2022;13(1):7490. https://doi.org/10.1038/s41467-022-34970-7 PMID: 36509735
-
Shaw LP, Chau KK, Kavanagh J, AbuOun M, Stubberfield E, Gweon HS, et al. Niche and local geography shape the pangenome of wastewater- and livestock-associated Enterobacteriaceae. Sci Adv. 2021;7(15):eabe3868. https://doi.org/10.1126/sciadv.abe3868 PMID: 33837077
-
Arredondo-Alonso S, Willems RJ, van Schaik W, Schürch AC. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom. 2017;3(10):e000128. https://doi.org/10.1099/mgen.0.000128 PMID: 29177087
-
Johnson TJ, Nolan LK. Plasmid Replicon Typing. In: Caugant DA (editor). Molecular Epidemiology of Microorganisms. Dordrecht: Springer; 2009. p. 27-35. Available from: http://link.springer.com/10.1007/978-1-60327-999-4_3
-
One Health European Joint Programme (OH-EJP). The Project ARDIG. 2024. Available from: https://onehealthejp.eu/jrp-ardig
-
Gonzalez TJB, Marcato F, de Freitas Costa E, van den Brand H, Hoorweg FA, Wolthuis-Fillerup M, et al. Longitudinal study on the prevalence of extended spectrum cephalosporins-resistant Escherichia coli colonization in Dutch veal farms. Vet Microbiol. 2022;273:109520. https://doi.org/10.1016/j.vetmic.2022.109520 PMID: 35939860
-
Storey N, Cawthraw S, Turner O, Rambaldi M, Lemma F, Horton R, et al. Use of genomics to explore AMR persistence in an outdoor pig farm with low antimicrobial usage. Microb Genom. 2022;8(3):000782. https://doi.org/10.1099/mgen.0.000782 PMID: 35344479
-
Mo SS, Norström M, Slettemeås JS, Urdahl AM, Telke AA, Sunde M. Longitudinal sampling reveals persistence of and genetic diversity in extended-spectrum cephalosporin-resistant Escherichia coli from Norwegian broiler production. Front Microbiol. 2021;12:795127. https://doi.org/10.3389/fmicb.2021.795127 PMID: 34956163
-
Mo SS, Telke AA, Osei KO, Sekse C, Slettemeås JS, Urdahl AM, et al. blaCTX-M-1/IncI1-Iγ Plasmids Circulating in Escherichia coli From Norwegian Broiler Production Are Related, but Distinguishable. Front Microbiol. 2020;11:333. https://doi.org/10.3389/fmicb.2020.00333 PMID: 32194533
-
European Food Safety AuthorityEuropean Centre for Disease Prevention and Control. The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2019-2020. EFSA J. 2022;20(3):e07209. PMID: 35382452
-
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491-500. https://doi.org/10.1093/jac/dkaa345 PMID: 32780112
-
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895-903. https://doi.org/10.1128/AAC.02412-14 PMID: 24777092
-
Seemann T. mlst. Available from: https://github.com/tseemann/mlst
-
Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020;21(1):180. https://doi.org/10.1186/s13059-020-02090-4 PMID: 32698896
-
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268-74. https://doi.org/10.1093/molbev/msu300 PMID: 25371430
-
Kaspersen H, Fiskebeck EZ. ALPPACA - A tooL for prokaryotic phylogeny and clustering analysis. J Open Source Softw. 2022;7(79):4677. https://doi.org/10.21105/joss.04677
-
Smith H, Bossers A, Harders F, Wu G, Woodford N, Schwarz S, et al. Characterization of epidemic IncI1-Iγ plasmids harboring ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans. Antimicrob Agents Chemother. 2015;59(9):5357-65. https://doi.org/10.1128/AAC.05006-14 PMID: 26100710
-
AbuOun M, Jones H, Stubberfield E, Gilson D, Shaw LP, Hubbard ATM, et al. A genomic epidemiological study shows that prevalence of antimicrobial resistance in Enterobacterales is associated with the livestock host, as well as antimicrobial usage. Microb Genom. 2021;7(10):000630. https://doi.org/10.1099/mgen.0.000630 PMID: 34609275
-
Katz LS, Griswold T, Morrison SS, Caravas JA, Zhang S, den Bakker HC, et al. Mashtree: a rapid comparison of whole genome sequence files. J Open Source Softw. 2019;4(44):1762. https://doi.org/10.21105/joss.01762 PMID: 35978566
-
Ramírez-Castillo FY, Guerrero-Barrera AL, Avelar-González FJ. An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Front Vet Sci. 2023;10:1158588. https://doi.org/10.3389/fvets.2023.1158588 PMID: 37397005
-
Jakobsen L, Garneau P, Kurbasic A, Bruant G, Stegger M, Harel J, et al. Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat and animal origin. J Med Microbiol. 2011;60(Pt 10):1502-11. https://doi.org/10.1099/jmm.0.033993-0 PMID: 21617024
-
Micenková L, Bosák J, Štaudová B, Kohoutová D, Čejková D, Woznicová V, et al. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates. MicrobiologyOpen. 2016;5(3):490-8. https://doi.org/10.1002/mbo3.345 PMID: 26987297
-
Sabaté M, Prats G, Moreno E, Ballesté E, Blanch AR, Andreu A. Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal wastewater. Res Microbiol. 2008;159(4):288-93. https://doi.org/10.1016/j.resmic.2008.02.001 PMID: 18434099
-
Reeves PR, Liu B, Zhou Z, Li D, Guo D, Ren Y, et al. Rates of mutation and host transmission for an Escherichia coli clone over 3 years. PLoS One. 2011;6(10):e26907. https://doi.org/10.1371/journal.pone.0026907 PMID: 22046404
-
de Been M, Lanza VF, de Toro M, Scharringa J, Dohmen W, Du Y, et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 2014;10(12):e1004776. https://doi.org/10.1371/journal.pgen.1004776 PMID: 25522320
-
Treacy J, Jenkins C, Paranthaman K, Jorgensen F, Mueller-Doblies D, Anjum M, et al. Outbreak of Shiga toxin-producing Escherichia coli O157:H7 linked to raw drinking milk resolved by rapid application of advanced pathogen characterisation methods, England, August to October 2017. Euro Surveill. 2019;24(16):1800191. https://doi.org/10.2807/1560-7917.ES.2019.24.16.1800191 PMID: 31014418
-
European Food Safety Authority (EFSA)Aerts M, Battisti A, Hendriksen R, Kempf I, Teale C, et al. Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J. 2019;17(6):e05709. PMID: 32626332
-
Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci. 1986;17:57-86.
Data & Media loading...