-
Non-invasive Streptococcus pneumoniae infections are associated with different serotypes than invasive infections, Belgium, 2020 to 2023
- Ioannis Passaris1 , Stéphanie Depickère2 , Toon Braeye3 , Marina Mukovnikova4 , Alexandra Vodolazkaia4 , Chloé Abels5 , Lize Cuypers6,7 , Stefanie Desmet6,7 , Pieter-Jan Ceyssens1 , NIPD study group Belgium8
-
View Affiliations Hide AffiliationsAffiliations: 1 Bacterial Diseases Unit, Sciensano, Brussels, Belgium 2 Platform Interventional Studies, Sciensano, Brussels, Belgium 3 Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium 4 Laboratory of Medical Microbiology, Sciensano, Brussels, Belgium 5 MSD Belgium, Brussels, Belgium 6 National Reference Centre for invasive Streptococcus pneumoniae, UZ Leuven, Leuven, Belgium 7 Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium 8 The members of the NIPD study group Belgium are listed under CollaboratorsIoannis PassarisIoannis.passaris sciensano.be
-
View Collaborators
NIPD study group Belgium: Jean-Marc Senterre, Te-din Huang, Amélie Heinrichs, Salah Lali, Philippe Lefèvre, Nélida Ciupilan, Alexandre Grimmelprez, Valérie Verbelen, Cécile Meex, Maria-Grazia Garrino, Marie Tré-Hardy, Koen Magerman, Steven Vervaeke, Kim Camps, Katelijne Floré, Louis Ide, Johan Frans, Elise Willems, Evilien Vekens, Chris Vanhentenrijk, Peter Verbeeck, Tom Spiritus, Clara CeyssensView Citation Hide Citation
Citation style for this article: Passaris Ioannis, Depickère Stéphanie, Braeye Toon, Mukovnikova Marina, Vodolazkaia Alexandra, Abels Chloé, Cuypers Lize, Desmet Stefanie, Ceyssens Pieter-Jan, NIPD study group Belgium. Non-invasive Streptococcus pneumoniae infections are associated with different serotypes than invasive infections, Belgium, 2020 to 2023. Euro Surveill. 2024;29(45):pii=2400108. https://doi.org/10.2807/1560-7917.ES.2024.29.45.2400108 Received: 15 Feb 2024; Accepted: 02 May 2024
Abstract
Despite widely implemented pneumococcal vaccination programmes, Streptococcus pneumoniae remains a global risk for human health. Streptococcus pneumoniae can cause invasive (IPD) or non-invasive pneumococcal disease (NIPD). Surveillance is mainly focusing on IPD, assessing the full impact of pneumococcal vaccination programmes on pneumococcal disease is challenging.
We aimed to prospectively investigate serotype distribution and antimicrobial resistance (AMR) of S. pneumoniae isolates from patients with NIPD and compare with data on IPD isolates and with a 2007–2008 dataset on NIPD.
Between September 2020 and April 2023, we collected isolates and patient data from patients with NIPD from 23 clinical laboratories in Belgium. Capsular typing was performed by a validated Fourier-Transform Infrared spectroscopic method, and AMR was assessed with broth microdilution, using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints.
We received S. pneumoniae isolates from 1,008 patients with lower respiratory tract infections (n = 760), otitis media (n = 190) and sinusitis (n = 58). Serotype 3 was the most prevalent serotype among the NIPD isolates. Serotypes not included in the 20-valent pneumococcal conjugate vaccine (PCV20) were significantly more common among the NIPD than among the IPD isolates. Antimicrobial resistance levels were significantly higher among the NIPD isolates (n = 539; 2020–2022) compared with the IPD isolates (n = 2,344; 2021–2022). Resistance to several β-lactam antimicrobials had increased significantly compared with 15 years before.
The NIPD isolates were strongly associated with non-vaccine serotypes and with increased AMR levels. This underlines the importance of continued NIPD surveillance for informed policy making on vaccination programmes.
Article metrics loading...
Full text loading...
References
-
Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, Gray AP, et al. . Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221-48. https://doi.org/10.1016/S0140-6736(22)02185-7 PMID: 36423648
-
Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev. 2015;28(3):871-99. https://doi.org/10.1128/CMR.00024-15 PMID: 26085553
-
Feldman C, Anderson R. Recent advances in the epidemiology and prevention of Streptococcus pneumoniae infections. F1000 Res. 2020;9:338. https://doi.org/10.12688/f1000research.22341.1 PMID: 32411353
-
Hanquet G, Krizova P, Valentiner-Branth P, Ladhani SN, Nuorti JP, Lepoutre A, et al. Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination. Thorax. 2019;74(5):473-82. https://doi.org/10.1136/thoraxjnl-2018-211767 PMID: 30355641
-
Savulescu C, Krizova P, Valentiner-Branth P, Ladhani S, Rinta-Kokko H, Levy C, et al. Effectiveness of 10 and 13-valent pneumococcal conjugate vaccines against invasive pneumococcal disease in European children: SpIDnet observational multicentre study. Vaccine. 2022;40(29):3963-74. https://doi.org/10.1016/j.vaccine.2022.05.011 PMID: 35637067
-
Amin-Chowdhury Z, Collins S, Sheppard C, Litt D, Fry NK, Andrews N, et al. Characteristics of invasive pneumococcal disease caused by emerging serotypes after the introduction of the 13-valent pneumococcal conjugate vaccine in England: a prospective observational cohort study, 2014-2018. Clin Infect Dis. 2020;71(8):e235-43. https://doi.org/10.1093/cid/ciaa043 PMID: 31955196
-
Desmet S, Lagrou K, Wyndham-Thomas C, Braeye T, Verhaegen J, Maes P, et al. Dynamic changes in paediatric invasive pneumococcal disease after sequential switches of conjugate vaccine in Belgium: a national retrospective observational study. Lancet Infect Dis. 2021;21(1):127-36. https://doi.org/10.1016/S1473-3099(20)30173-0 PMID: 32702303
-
Janoff EN, Musher DM. 201 — Streptococcus pneumoniae. In: Bennett JE, Dolin R, Blaser MJ (editors). Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Eighth ed., Amsterdam: Elsevier; 2014, p. 2310-27. Available from: https://www.sciencedirect.com/science/article/abs/pii/B9781455748013002010
-
Blasi F, Mantero M, Santus P, Tarsia P. Understanding the burden of pneumococcal disease in adults. Clin Microbiol Infect. 2012;18(Suppl 5):7-14. https://doi.org/10.1111/j.1469-0691.2012.03937.x PMID: 22882668
-
Pick H, Daniel P, Rodrigo C, Bewick T, Ashton D, Lawrence H, et al. Pneumococcal serotype trends, surveillance and risk factors in UK adult pneumonia, 2013-18. Thorax. 2020;75(1):38-49. https://doi.org/10.1136/thoraxjnl-2019-213725 PMID: 31594801
-
Uddén F, Rünow E, Slotved H-C, Fuursted K, Ahl J, Riesbeck K. Characterization of Streptococcus pneumoniae detected in clinical respiratory tract samples in southern Sweden 2 to 4 years after introduction of PCV13. J Infect. 2021;83(2):190-6. https://doi.org/10.1016/j.jinf.2021.05.031 PMID: 34062179
-
Forstner C, Kolditz M, Kesselmeier M, Ewig S, Rohde G, Barten-Neiner G, et al. Pneumococcal conjugate serotype distribution and predominating role of serotype 3 in German adults with community-acquired pneumonia. Vaccine. 2020;38(5):1129-36. https://doi.org/10.1016/j.vaccine.2019.11.026 PMID: 31761500
-
Janssens A, Vaes B, Abels C, Crèvecoeur J, Mamouris P, Merckx B, et al. Pneumococcal vaccination coverage and adherence to recommended dosing schedules in adults: a repeated cross-sectional study of the INTEGO morbidity registry. BMC Public Health. 2023;23(1):1104. https://doi.org/10.1186/s12889-023-15939-7 PMID: 37286969
-
Boey L, Bosmans E, Ferreira LB, Heyvaert N, Nelen M, Smans L, et al. Vaccination coverage of recommended vaccines and determinants of vaccination in at-risk groups. Hum Vaccin Immunother. 2020;16(9):2136-43. https://doi.org/10.1080/21645515.2020.1763739 PMID: 32614656
-
Desmet S, Verhaegen J, Van Ranst M, Peetermans W, Lagrou K. Switch in a childhood pneumococcal vaccination programme from PCV13 to PCV10: a defendable approach? Lancet Infect Dis. 2018;18(8):830-1. https://doi.org/10.1016/S1473-3099(18)30346-3 PMID: 30001857
-
Wouters I, Desmet S, Van Heirstraeten L, Herzog SA, Beutels P, Verhaegen J, et al. How nasopharyngeal pneumococcal carriage evolved during and after a PCV13-to-PCV10 vaccination programme switch in Belgium, 2016 to 2018. Euro Surveill. 2020;25(5):1900303. https://doi.org/10.2807/1560-7917.ES.2020.25.5.1900303 PMID: 32046817
-
Ekinci E, Van Heirstraeten L, Willen L, Desmet S, Wouters I, Vermeulen H, et al. , NP Carriage Study Group. Serotype 19A and 6C account for one third of pneumococcal carriage among Belgian day-care children four years after a shift to a lower-valent PCV. J Pediatric Infect Dis Soc. 2023;12(1):36-42. https://doi.org/10.1093/jpids/piac117 PMID: 36377804
-
Desmet S, Wouters I, Heirstraeten LV, Beutels P, Van Damme P, Malhotra-Kumar S, et al. In-depth analysis of pneumococcal serotypes in Belgian children (2015-2018): Diversity, invasive disease potential, and antimicrobial susceptibility in carriage and disease. Vaccine. 2021;39(2):372-9. https://doi.org/10.1016/j.vaccine.2020.11.044 PMID: 33308889
-
Ekinci E, Desmet S, Van Heirstraeten L, Mertens C, Wouters I, Beutels P, et al. Streptococcus pneumoniae serotypes carried by young children and their association with acute otitis media during the period 2016-2019. Front Pediatr. 2021;9:664083. https://doi.org/10.3389/fped.2021.664083 PMID: 34291017
-
Lewnard JA, Hong V, Bruxvoort KJ, Grant LR, Jódar L, Cané A, et al. Burden of lower respiratory tract infections preventable by adult immunization with 15- and 20-valent pneumococcal conjugate vaccines in the United States. Clin Infect Dis. 2023;77(9):1340-52. https://doi.org/10.1093/cid/ciad355 PMID: 37293708
-
Platt HL, Cardona JF, Haranaka M, Schwartz HI, Narejos Perez S, Dowell A, et al. A phase 3 trial of safety, tolerability, and immunogenicity of V114, 15-valent pneumococcal conjugate vaccine, compared with 13-valent pneumococcal conjugate vaccine in adults 50 years of age and older (PNEU-AGE). Vaccine. 2022;40(1):162-72. https://doi.org/10.1016/j.vaccine.2021.08.049 PMID: 34507861
-
Cannon K, Cardona JF, Yacisin K, Thompson A, Belanger TJ, Lee D-Y, et al. Safety and immunogenicity of a 20-valent pneumococcal conjugate vaccine coadministered with quadrivalent influenza vaccine: A phase 3 randomized trial. Vaccine. 2023;41(13):2137-46. https://doi.org/10.1016/j.vaccine.2022.11.046 PMID: 36828719
-
Fairman J, Agarwal P, Barbanel S, Behrens C, Berges A, Burky J, et al. Non-clinical immunological comparison of a Next-Generation 24-valent pneumococcal conjugate vaccine (VAX-24) using site-specific carrier protein conjugation to the current standard of care (PCV13 and PPV23). Vaccine. 2021;39(23):3197-206. https://doi.org/10.1016/j.vaccine.2021.03.070 PMID: 33965258
-
Simon MW, Bataille R, Caldwell NS, Gessner BD, Jodar L, Lamberth E, et al. Safety and immunogenicity of a multivalent pneumococcal conjugate vaccine given with 13-valent pneumococcal conjugate vaccine in healthy infants: A phase 2 randomized trial. Hum Vaccin Immunother. 2023;19(2):2245727. https://doi.org/10.1080/21645515.2023.2245727 PMID: 37927075
-
McGuinness D, Kaufhold RM, McHugh PM, Winters MA, Smith WJ, Giovarelli C, et al. Immunogenicity of PCV24, an expanded pneumococcal conjugate vaccine, in adult monkeys and protection in mice. Vaccine. 2021;39(30):4231-7. https://doi.org/10.1016/j.vaccine.2021.04.067 PMID: 34074546
-
Platt H, Omole T, Cardona J, Fraser NJ, Mularski RA, Andrews C, et al. Safety, tolerability, and immunogenicity of a 21-valent pneumococcal conjugate vaccine, V116, in healthy adults: phase 1/2, randomised, double-blind, active comparator-controlled, multicentre, US-based trial. Lancet Infect Dis. 2023;23(2):233-46. https://doi.org/10.1016/S1473-3099(22)00526-6 PMID: 36116461
-
Bonten MJM, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S, et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med. 2015;372(12):1114-25. https://doi.org/10.1056/NEJMoa1408544 PMID: 25785969
-
Lund E. Laboratory diagnosis of Pneumococcus infections. Bull World Health Organ. 1960;23(1):5-13. PMID: 14418893
-
Varghese R, Jayaraman R, Veeraraghavan B. Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era. J Microbiol Methods. 2017;141:48-54. https://doi.org/10.1016/j.mimet.2017.07.015 PMID: 28780272
-
Metcalf BJ, Waldetoft KW, Beall BW, Brown SP. Variation in pneumococcal invasiveness metrics is driven by serotype carriage duration and initial risk of disease. Epidemics. 2023;45(45):100731. https://doi.org/10.1016/j.epidem.2023.100731 PMID: 38039595
-
Vanhoof R, Camps K, Carpentier M, De Craeye S, Frans J, Glupczynski Y, et al. 10th survey of antimicrobial resistance in noninvasive clinical isolates of Streptococcus pneumoniae collected in Belgium during winter 2007-2008. Pathol Biol (Paris). 2010;58(2):147-51. https://doi.org/10.1016/j.patbio.2009.07.018 PMID: 19892491
-
Passaris I, Mauder N, Kostrzewa M, Burckhardt I, Zimmermann S, van Sorge NM, et al. Validation of fourier transform infrared spectroscopy for serotyping of Streptococcus pneumoniae. J Clin Microbiol. 2022;60(7):e0032522. https://doi.org/10.1128/jcm.00325-22 PMID: 35699436
-
National Reference Center for invasive Streptococcus pneumoniae invasive (NRC). Report National Reference Centre Streptococcus pneumoniae 2021 and 2022. Leuven: NRC. [Accessed: 9 Oct 2024]. Available from: https://www.sciensano.be/en/nrc-nrl/national-reference-center-nrc-streptococcus-pneumoniae-invasive
-
Hausdorff WP, Bryant J, Paradiso PR, Siber GR. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin Infect Dis. 2000;30(1):100-21. https://doi.org/10.1086/313608 PMID: 10619740
-
Løchen A, Truscott JE, Croucher NJ. Analysing pneumococcal invasiveness using Bayesian models of pathogen progression rates. PLOS Comput Biol. 2022;18(2):e1009389. https://doi.org/10.1371/journal.pcbi.1009389 PMID: 35176026
-
Dagan R, Pelton S, Bakaletz L, Cohen R. Prevention of early episodes of otitis media by pneumococcal vaccines might reduce progression to complex disease. Lancet Infect Dis. 2016;16(4):480-92. https://doi.org/10.1016/S1473-3099(15)00549-6 PMID: 27036355
-
Feemster K, Hausdorff WP, Banniettis N, Platt H, Velentgas P, Esteves-Jaramillo A, et al. Implications of cross-reactivity and cross-protection for pneumococcal vaccine development. Vaccines (Basel). 2024;12(9):974. https://doi.org/10.3390/vaccines12090974 PMID: 39340006
-
Luck JN, Tettelin H, Orihuela CJ. Sugar-coated killer: serotype 3 pneumococcal disease. Front Cell Infect Microbiol. 2020;10:613287. https://doi.org/10.3389/fcimb.2020.613287 PMID: 33425786
-
Melin M, Jarva H, Siira L, Meri S, Käyhty H, Väkeväinen M. Streptococcus pneumoniae capsular serotype 19F is more resistant to C3 deposition and less sensitive to opsonophagocytosis than serotype 6B. Infect Immun. 2009;77(2):676-84. https://doi.org/10.1128/IAI.01186-08 PMID: 19047408
-
Arends DW, Miellet WR, Langereis JD, Ederveen THA, van der Gaast-de Jongh CE, van Scherpenzeel M, et al. Examining the distribution and impact of single-nucleotide polymorphisms in the capsular locus of Streptococcus pneumoniae serotype 19A. Infect Immun. 2021;89(11):e0024621. https://doi.org/10.1128/IAI.00246-21 PMID: 34251291
-
Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol. 2018;16(6):355-67. https://doi.org/10.1038/s41579-018-0001-8 PMID: 29599457
-
Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: Invasion and Inflammation. Microbiol Spectr. 2019;7(2):10.1128. https://doi.org/10.1128/microbiolspec.GPP3-0004-2018 PMID: 30873934
-
Hausdorff WP, Feikin DR, Klugman KP. Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis. 2005;5(2):83-93. https://doi.org/10.1016/S1473-3099(05)70083-9 PMID: 15680778
-
Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis. 2003;187(9):1424-32. https://doi.org/10.1086/374624 PMID: 12717624
-
Simell B, Auranen K, Käyhty H, Goldblatt D, Dagan R, O’Brien KL,, et al. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012;11(7):841-55. https://doi.org/10.1586/erv.12.53 PMID: 22913260
-
Fernández-Delgado L, Càmara J, González-Díaz A, Grau I, Shoji H, Tubau F, et al. Serotypes in adult pneumococcal pneumonia in Spain in the era of conjugate vaccines. Microorganisms. 2021;9(11):2245. https://doi.org/10.3390/microorganisms9112245 PMID: 34835371
-
Silva-Costa C, Gomes-Silva J, Santos A, Ramirez M, Melo-Cristino J, Portuguese Group for the Study of Streptococcal Infections. Adult non-invasive pneumococcal pneumonia in Portugal is dominated by serotype 3 and non-PCV13 serotypes 3-years after near universal PCV13 use in children. Front Public Health. 2023;11:1279656. https://doi.org/10.3389/fpubh.2023.1279656 PMID: 38186693
-
Shaw D, Abad R, Amin-Chowdhury Z, Bautista A, Bennett D, Broughton K, et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium. Lancet Digit Health. 2023;5(9):e582-93. https://doi.org/10.1016/S2589-7500(23)00108-5 PMID: 37516557
-
Brissac T, Martínez E, Kruckow KL, Riegler AN, Ganaie F, Im H, et al. Capsule promotes intracellular survival and vascular endothelial cell translocation during invasive pneumococcal disease. MBio. 2021;12(5):e0251621. https://doi.org/10.1128/mBio.02516-21 PMID: 34634940
-
Kietzman CC, Gao G, Mann B, Myers L, Tuomanen EI. Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium. Nat Commun. 2016;7(1):10859. https://doi.org/10.1038/ncomms10859 PMID: 26924467
-
Rueff A-S, van Raaphorst R, Aggarwal SD, Santos-Moreno J, Laloux G, Schaerli Y, et al. Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions. Nat Commun. 2023;14(1):7454. https://doi.org/10.1038/s41467-023-43241-y PMID: 37978173
-
Alghofaili F, Najmuldeen H, Kareem BO, Shlla B, Fernandes VE, Danielsen M, et al. Host stress signals stimulate pneumococcal transition from colonization to dissemination into the lungs. MBio. 2021;12(6):e0256921. https://doi.org/10.1128/mBio.02569-21 PMID: 34696596
-
Glanville DG, Gazioglu O, Marra M, Tokars VL, Kushnir T, Habtom M, et al. Pneumococcal capsule expression is controlled through a conserved, distal cis-regulatory element during infection. PLoS Pathog. 2023;19(1):e1011035. https://doi.org/10.1371/journal.ppat.1011035 PMID: 36719895
-
Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine. 2019;43:338-46. https://doi.org/10.1016/j.ebiom.2019.04.021 PMID: 31003929
-
Obolski U, Gori A, Lourenço J, Thompson C, Thompson R, French N, et al. Identifying genes associated with invasive disease in S. pneumoniae by applying a machine learning approach to whole genome sequence typing data. Sci Rep. 2019;9(1):4049. https://doi.org/10.1038/s41598-019-40346-7 PMID: 30858412
-
Jacques LC, Panagiotou S, Baltazar M, Senghore M, Khandaker S, Xu R, et al. Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin. Nat Commun. 2020;11(1):1892. https://doi.org/10.1038/s41467-020-15751-6 PMID: 32312961
-
Chaguza C, Yang M, Cornick JE, du Plessis M, Gladstone RA, Kwambana-Adams BA, et al. Bacterial genome-wide association study of hyper-virulent pneumococcal serotype 1 identifies genetic variation associated with neurotropism. Commun Biol. 2020;3(1):559. https://doi.org/10.1038/s42003-020-01290-9 PMID: 33033372
-
Higgs C, Kumar LS, Stevens K, Strachan J, Korman T, Horan K, et al. Comparison of contemporary invasive and non-invasive Streptococcus pneumoniae isolates reveals new insights into circulating anti-microbial resistance determinants. Antimicrob Agents Chemother. 2023;67(11):e0078523. https://doi.org/10.1128/aac.00785-23 PMID: 37823632
-
Bruyndonckx R, Coenen S, Hens N, Vandael E, Catry B, Goossens H. Antibiotic use and resistance in Belgium: the impact of two decades of multi-faceted campaigning. Acta Clin Belg. 2021;76(4):280-8. https://doi.org/10.1080/17843286.2020.1721135 PMID: 32024450
-
Dewé TCM, D’Aeth JC, Croucher NJ. Genomic epidemiology of penicillin-non-susceptible Streptococcus pneumoniae. Microb Genom. 2019;5(10):e000305. https://doi.org/10.1099/mgen.0.000305 PMID: 31609685
-
Andrejko K, Ratnasiri B, Lewnard JA. Association of pneumococcal serotype with susceptibility to antimicrobial drugs: a systematic review and meta-analysis. Clin Infect Dis. 2022;75(1):131-40. https://doi.org/10.1093/cid/ciab852 PMID: 34599811
-
Brueggemann AB, Jansen van Rensburg MJ, Shaw D, McCarthy ND, Jolley KA, Maiden MCJ, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. Lancet Digit Health. 2021;3(6):e360-70. https://doi.org/10.1016/S2589-7500(21)00077-7 PMID: 34045002
Data & Media loading...
Supplementary data
-
-
Supplementary Material
-