1887
Research Open Access
Like 0

Abstract

Background

Wastewater surveillance is an effective approach to monitor population health, as exemplified by its role throughout the COVID-19 pandemic.

Aim

This study explores the possibility of extending wastewater surveillance to the Paris 2024 Olympic and Paralympic Games, focusing on identifying priority pathogen targets that are relevant and feasible to monitor in wastewater for these events.

Methods

A list of 60 pathogens of interest for general public health surveillance for the Games was compiled. Each pathogen was evaluated against three inclusion criteria: (A) analytical feasibility; (B) relevance, i.e. with regards to the specificities of the event and the characteristics of the pathogen; and (C) added value to inform public health decision-making. Analytical feasibility was assessed through evidence from peer-reviewed publications demonstrating the detectability of pathogens in sewage, refining the initial list to 25 pathogens. Criteria B and C were evaluated via expert opinion using the Delphi method. The panel consisting of some 30 experts proposed five additional pathogens meeting criterion A, totalling 30 pathogens assessed throughout the three-round iterative questionnaire. Pathogens failing to reach 70% group consensus threshold underwent further deliberation by a subgroup of experts.

Results

Six priority targets suitable for wastewater surveillance during the Games were successfully identified: poliovirus, influenza A virus, influenza B virus, mpox virus, SARS-CoV-2 and measles virus.

Conclusion

This study introduced a model framework for identifying context-specific wastewater surveillance targets for a mass gathering. Successful implementation of a wastewater surveillance plan for Paris 2024 could incentivise similar monitoring efforts for other mass gatherings globally.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.28.2400231
2024-07-11
2024-12-12
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.28.2400231
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/28/eurosurv-29-28-5_TORO.html?itemId=/content/10.2807/1560-7917.ES.2024.29.28.2400231&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). Environmental surveillance for SARS-CoV-2 to complement other public health surveillance. Geneva: WHO; 2023. Available from: https://www.who.int/publications/i/item/9789240080638
  2. Choi PM, Tscharke BJ, Donner E, Grant SC, Kaserzon SL, Mackie R, et al. Wastewater-based epidemiology biomarkers: Past, present and future. Trends Analyt Chem. 2018;105:453-69.  https://doi.org/10.1016/j.trac.2018.06.004 
  3. World Health Organization (WHO), Global Polio Eradication Initiative. Field guidance for the implementation of environmental surveillance for poliovirus 2023. Geneva: WHO; 2023. Available from: https://iris.who.int/handle/10665/368833
  4. National Academies of Sciences, Engineering, and Medicine. Wastewater-based Disease Surveillance for Public Health Action. Washington, D.C.: National Academies Press; 2023. .
  5. Klapsa D, Wilton T, Zealand A, Bujaki E, Saxentoff E, Troman C, et al. Sustained detection of type 2 poliovirus in London sewage between February and July, 2022, by enhanced environmental surveillance. Lancet. 2022;400(10362):1531-8.  https://doi.org/10.1016/S0140-6736(22)01804-9  PMID: 36243024 
  6. World Health Organization (WHO). Public health for mass gatherings: key considerations 2015. Geneva: WHO; 2015. Available from: https://www.who.int/publications/i/item/public-health-for-mass-gatherings-key-considerations
  7. European Centre for Disease Prevention and Control (ECDC). Public health risks related to communicable diseases at the Rio de Janeiro Olympic and Paralympic Games, Brazil 2016 - 1st update, 13 June 2016. Stockholm: ECDC; 2016. Available from: https://www.ecdc.europa.eu/en/publications-data/public-health-risks-related-communicable-diseases-rio-de-janeiro-olympic-and
  8. Decludt B, Guillotin L, van Gastel B, Perrocheau A, Capek L, Ledrans M, et al. Foyer épidémique de légionelloses à Paris en juin 1998. Euro Surveill. 1999;4:115-8.  https://doi.org/10.2807/esm.04.11.00060-en  PMID: 12631883 
  9. Wilder-Smith A, Goh KT, Barkham T, Paton NI. Hajj-associated outbreak strain of Neisseria meningitidis serogroup W135: estimates of the attack rate in a defined population and the risk of invasive disease developing in carriers. Clin Infect Dis. 2003;36(6):679-83.  https://doi.org/10.1086/367858  PMID: 12627350 
  10. Schenkel K, Williams C, Eckmanns T, Poggensee G, Benzler J, Josephsen J, et al. Enhanced Surveillance of Infectious Diseases : the 2006 FIFA World Cup experience, Germany. Euro Surveill. 2006;11(12):15-6.  https://doi.org/10.2807/esm.11.12.00670-en  PMID: 29208141 
  11. Gardy JL, Naus M, Amlani A, Chung W, Kim H, Tan M, et al. Whole-genome sequencing of measles virus genotypes H1 and D8 during outbreaks of infection following the 2010 Olympic Winter Games reveals viral transmission routes. J Infect Dis. 2015;212(10):1574-8.  https://doi.org/10.1093/infdis/jiv271  PMID: 26153409 
  12. International Olympic Committee (IOC). Paris 2024 Olympic Games. Paris: IOC. [Accessed: 15 Aug 2023]. Available from: https://www.paris2024.org/en/the-olympic-games-paris-2024
  13. Office du Tourisme et des Congrès de Paris. Note de synthèse: Fréquentation : qu’attendre des Jeux Olympiques et Paralympiques de Paris 2024. [Summary: Attendance: what to expect from the Games Paris 2024 Olympics and Paralympics]. Paris: Paris je t’aime – Office de Tourisme; 2023. French. Available from: https://www.etoa.org/wp-content/uploads/2022/07/Paris.SynthesePrevisions-JOP2024.pdf
  14. Eaton C, Coxon S, Pattis I, Gilpin B. Wastewater-based epidemiology: A framework to identify and prioritise health. The Institute of Environmental Science and Research Limited; 2021. Available from: https://www.esr.cri.nz/digital-library/wastewater-based-epidemiology-a-framework-to-identify-and-prioritise-health-determinants-for-wastewater-monitoring
  15. Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, et al. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. J Water Health. 2022;20(9):1284-313.  https://doi.org/10.2166/wh.2022.026  PMID: 36170187 
  16. World Health Organization (WHO). Surveillance, case investigation and contact tracing for mpox (monkeypox): interim guidance, 22 December 2022. Geneva: WHO; 2022. Available from: https://iris.who.int/bitstream/handle/10665/365398/WHO-MPX-Surveillance-2022.4-eng.pdf?sequence=1
  17. Niederberger M, Spranger J. Delphi technique in health sciences: a map. Front Public Health. 2020;8:457.  https://doi.org/10.3389/fpubh.2020.00457  PMID: 33072683 
  18. Hallowell MR. Techniques to minimize bias when using the Delphi method to quantify construction safety and health risks. In: Building a Sustainable Future, pages 1489-98. 2012.
  19. United Nations Regional Information Centre for Western Europe. WHO: “Alarming” rise of measles cases in Europe. Brussels: United Nations Western Europe; 2024. Available from: https://unric.org/en/who-alarming-rise-of-measles-cases-in-europe
  20. Moniuszko S. Measles cases rose 79% globally last year, WHO says. Experts explain why. CBS News 2024. Available from: https://www.cbsnews.com/news/measles-cases-rose-worldwide-2023-who
  21. Tarantola A, Quatresous I, Paquet C. Risk and control of imported cholera in a high-income country. Lancet Infect Dis. 2008;8(5):270-1.  https://doi.org/10.1016/S1473-3099(08)70073-2  PMID: 18471765 
  22. Corso M, Galey C, Seux R, Beaudeau P. An assessment of current and past concentrations of trihalomethanes in drinking water throughout France. Int J Environ Res Public Health. 2018;15(8):1669.  https://doi.org/10.3390/ijerph15081669  PMID: 30082664 
  23. Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (Anses). Comment éviter les intoxications alimentaires liées aux norovirus? Maisons-Alfort: Anses; 2023. Available from: https://www.anses.fr/fr/content/eviter-intoxications-alimentaires-norovirus
  24. Institut Pasteur. Shigellose. Institut Pasteur; 2015. Available from: https://www.pasteur.fr/fr/centre-medical/fiches-maladies/shigellose
  25. Public Health Agency of Canada. Pathogen Safety Data Sheets: Infectious Substances – Hepatitis A virus (HAV). Ottawa: Government of Canada; 2011. Available from: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/hepatitis-a-virus.html
  26. Ryerson AB, Lang D, Alazawi MA, Neyra M, Hill DT, St George K, et al. Wastewater testing and detection of poliovirus type 2 genetically linked to virus isolated from a paralytic polio case - New York, March 9-October 11, 2022. Atlanta: Centers for Disease Control and Prevention; 2022. MMWR Morb Mortal Wkly Rep. 2022;71(44):1418-24.  https://doi.org/10.15585/mmwr.mm7144e2  PMID: 36327157 
  27. European Centre for Disease Prevention and Control (ECDC). Factsheet about seasonal influenza. Stockholm: ECDC; 2022. Available from: https://www.ecdc.europa.eu/en/seasonal-influenza/facts/factsheet
  28. Dlamini M, Msolo L, Ehi Ebomah K, Nontongana N, Ifeanyi Okoh A. A systematic review on the incidence of influenza viruses in wastewater matrices: Implications for public health. PLoS One. 2024;19(4):e0291900.  https://doi.org/10.1371/journal.pone.0291900  PMID: 38662758 
  29. Adams C, Kirby AE, Bias M, Riser A, Wong KK, Mercante JW, et al. Detecting mpox cases through wastewater surveillance - United States, August 2022-May 2023. MMWR Morb Mortal Wkly Rep. 2024;73(2):37-43.  https://doi.org/10.15585/mmwr.mm7302a3  PMID: 38236784 
  30. Tiwari A, Adhikari S, Kaya D, Islam MA, Malla B, Sherchan SP, et al. Monkeypox outbreak: Wastewater and environmental surveillance perspective. Sci Total Environ. 2023;856(Pt 2):159166.  https://doi.org/10.1016/j.scitotenv.2022.159166  PMID: 36202364 
  31. Gazecka M, Sniezek J, Maciolek K, Kowala-Piaskowska A, Zmora P. Mpox virus detection in the wastewater and the number of hospitalized patients in the Poznan metropolitan area, Poland. Int J Infect Dis. 2023;133:75-7.  https://doi.org/10.1016/j.ijid.2023.05.014  PMID: 37196758 
  32. Adams C, Bias M, Welsh RM, Webb J, Reese H, Delgado S, et al. The National Wastewater Surveillance System (NWSS): From inception to widespread coverage, 2020-2022, United States. Sci Total Environ. 2024;924:171566.  https://doi.org/10.1016/j.scitotenv.2024.171566  PMID: 38461979 
  33. European Centre for Disease Prevention and Control (ECDC). Increasing risk of mosquito-borne diseases in EU/EEA following spread of Aedes species. Stockholm: ECDC; 2023. Available from: https://www.ecdc.europa.eu/en/news-events/increasing-risk-mosquito-borne-diseases-eueea-following-spread-aedes-species
  34. Hamouda M, Mustafa F, Maraqa M, Rizvi T, Aly Hassan A. Wastewater surveillance for SARS-CoV-2: Lessons learnt from recent studies to define future applications. Sci Total Environ. 2021;759:143493.  https://doi.org/10.1016/j.scitotenv.2020.143493  PMID: 33190883 
  35. Daszak P, das Neves C, Amuasi J, Haymen D, Kuiken T, Roche B, et al. Workshop report on biodiversity and pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services Bonn: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES); 2020. Available from: https://zenodo.org/records/7432079
  36. Dufour B. Les causes de l’émergence des maladies infectieuses [The causes of the emergence of infectious diseases]. Bull Acad Natl Med. 2017;201(7):1189-95.  https://doi.org/10.1016/S0001-4079(19)30410-8  PMID: 32226057 
  37. Hoang VT, Al-Tawfiq JA, Gautret P. The Tokyo Olympic Games and the Risk of COVID-19. Curr Trop Med Rep. 2020;7(4):126-32.  https://doi.org/10.1007/s40475-020-00217-y  PMID: 33145147 
  38. McCloskey B, Endericks T, Catchpole M, Zambon M, McLauchlin J, Shetty N, et al. London 2012 Olympic and Paralympic Games: public health surveillance and epidemiology. Lancet. 2014;383(9934):2083-9.  https://doi.org/10.1016/S0140-6736(13)62342-9  PMID: 24857700 
  39. World Health Organization (WHO). Prioritizing diseases for research and development in emergency contexts. Geneva: WHO. Available from: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts
  40. Economopoulou A, Kinross P, Domanovic D, Coulombier D. Infectious diseases prioritisation for event-based surveillance at the European Union level for the 2012 Olympic and Paralympic Games. Euro Surveill. 2014;19(15):20770.  https://doi.org/10.2807/1560-7917.ES2014.19.15.20770  PMID: 24762663 
  41. National Institute of Infectious Diseases, Center for Emergency Preparedness and Response, Center for Field Epidemic Intelligence, Research and Professional Development, Center for Surveillance, Immunization, and Epidemiologic Research. Infectious Disease Risk Assessment for the Tokyo Olympic and Paralympic Games (Updated Version). Tokyo: NIID; 2021. Available from: https://www.niid.go.jp/niid/ja/2019-ncov/2484-idsc/10471-covid19-45.html
/content/10.2807/1560-7917.ES.2024.29.28.2400231
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error