-
Highly pathogenic avian influenza A(H5N1) virus infections on fur farms connected to mass mortalities of black-headed gulls, Finland, July to October 2023
- Lauri Kareinen1 , Niina Tammiranta1 , Ari Kauppinen1 , Bianca Zecchin2 , Ambra Pastori2 , Isabella Monne2 , Calogero Terregino2 , Edoardo Giussani2 , Riikka Kaarto3 , Veera Karkamo1 , Tanja Lähteinen1 , Hanna Lounela1 , Tuija Kantala1 , Ilona Laamanen1 , Tiina Nokireki1 , Laura London1 , Otto Helve4 , Sohvi Kääriäinen4 , Niina Ikonen4 , Jari Jalava4 , Laura Kalin-Mänttäri4 , Anna Katz4 , Carita Savolainen-Kopra4 , Erika Lindh4 , Tarja Sironen5 , Essi M Korhonen5 , Kirsi Aaltonen5 , Monica Galiano6 , Alice Fusaro2 , Tuija Gadd1
-
View Affiliations Hide AffiliationsAffiliations: 1 Finnish Food Authority (FFA), Helsinki, Finland 2 Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy 3 Finnish Food Authority, Seinäjoki, Finland 4 Finnish Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland 5 University of Helsinki, Department of Veterinary Biosciences, Helsinki, Finland 6 Worldwide Influenza Centre, Francis Crick Institute, London, United KingdomLauri Kareinenlauri.kareinen ruokavirasto.fi
-
View Citation Hide Citation
Citation style for this article: Kareinen Lauri, Tammiranta Niina, Kauppinen Ari, Zecchin Bianca, Pastori Ambra, Monne Isabella, Terregino Calogero, Giussani Edoardo, Kaarto Riikka, Karkamo Veera, Lähteinen Tanja, Lounela Hanna, Kantala Tuija, Laamanen Ilona, Nokireki Tiina, London Laura, Helve Otto, Kääriäinen Sohvi, Ikonen Niina, Jalava Jari, Kalin-Mänttäri Laura, Katz Anna, Savolainen-Kopra Carita, Lindh Erika, Sironen Tarja, Korhonen Essi M, Aaltonen Kirsi, Galiano Monica, Fusaro Alice, Gadd Tuija. Highly pathogenic avian influenza A(H5N1) virus infections on fur farms connected to mass mortalities of black-headed gulls, Finland, July to October 2023. Euro Surveill. 2024;29(25):pii=2400063. https://doi.org/10.2807/1560-7917.ES.2024.29.25.2400063 Received: 26 Jan 2024; Accepted: 06 May 2024
Abstract
Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020–2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.
Article metrics loading...
Full text loading...
References
-
Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec. 2018;93(12):142-52. PMID: 29569430
-
Floyd T, Banyard AC, Lean FZX, Byrne AMP, Fullick E, Whittard E, et al. Encephalitis and death in wild mammals at a rehabilitation center after infection with highly pathogenic avian influenza A(H5N8) virus, United Kingdom. Emerg Infect Dis. 2021;27(11):2856-63. https://doi.org/10.3201/eid2711.211225 PMID: 34670647
-
Rijks JM, Hesselink H, Lollinga P, Wesselman R, Prins P, Weesendorp E, et al. Highly pathogenic avian influenza A(H5N1) virus in wild red foxes, the Netherlands, 2021. Emerg Infect Dis. 2021;27(11):2960-2. https://doi.org/10.3201/eid2711.211281 PMID: 34670656
-
European Food Safety AuthorityEuropean Centre for Disease Prevention and ControlEuropean Union Reference Laboratory for Avian InfluenzaAdlhoch C, Fusaro A, Gonzales JL, et al. Avian influenza overview September-December 2023. EFSA J. 2023;21(12):e8539. https://doi.org/10.2903/j.efsa.2023.8539 PMID: 38116102
-
Tammiranta N, Isomursu M, Fusaro A, Nylund M, Nokireki T, Giussani E, et al. Highly pathogenic avian influenza A (H5N1) virus infections in wild carnivores connected to mass mortalities of pheasants in Finland. Infect Genet Evol. 2023;111:105423. https://doi.org/10.1016/j.meegid.2023.105423 PMID: 36889484
-
Agüero M, Monne I, Sánchez A, Zecchin B, Fusaro A, Ruano MJ, et al. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Euro Surveill. 2023;28(3):2300001. https://doi.org/10.2807/1560-7917.ES.2023.28.3.2300001 PMID: 36695488
-
The Finnish Food Authority (FFA). Eläintautien valvonta- ja seurantaohjelmat 2023, versio 2. [Surveillance and monitoring programmes of animal diseases 2023, version 2]. Helsinki: FFA. [Accessed: 2 Apr 2024]. Available from: https://www.ruokavirasto.fi/globalassets/elaimet/elainten-terveys-ja-elaintaudit/elaintautien-seuranta--ja-valvontaohjelmat-2023_2.pdf
-
Lindh E, Lounela H, Ikonen N, Kantala T, Savolainen-Kopra C, Kauppinen A, et al. Highly pathogenic avian influenza A(H5N1) virus infection on multiple fur farms in the South and Central Ostrobothnia regions of Finland, July 2023. Euro Surveill. 2023;28(31):2300400. https://doi.org/10.2807/1560-7917.ES.2023.28.31.2300400 PMID: 37535475
-
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-80. https://doi.org/10.1093/molbev/mst010 PMID: 23329690
-
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. 2018;35(2):518-22. https://doi.org/10.1093/molbev/msx281 PMID: 29077904
-
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587-9. https://doi.org/10.1038/nmeth.4285 PMID: 28481363
-
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268-74. https://doi.org/10.1093/molbev/msu300 PMID: 25371430
-
Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, et al. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol. 2024;10(1):veae027. https://doi.org/10.1093/ve/veae027 PMID: 38699215
-
Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 PMID: 10331250
-
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1):vey016. https://doi.org/10.1093/ve/vey016 PMID: 29942656
-
Shapiro B, Rambaut A, Drummond AJ. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol. 2006;23(1):7-9. https://doi.org/10.1093/molbev/msj021 PMID: 16177232
-
Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol. 2012;29(9):2157-67. https://doi.org/10.1093/molbev/mss084 PMID: 22403239
-
Minin VN, Bloomquist EW, Suchard MA. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol. 2008;25(7):1459-71. https://doi.org/10.1093/molbev/msn090 PMID: 18408232
-
Minin VN, Suchard MA. Counting labeled transitions in continuous-time Markov models of evolution. J Math Biol. 2008;56(3):391-412. https://doi.org/10.1007/s00285-007-0120-8 PMID: 17874105
-
Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLOS Comput Biol. 2009;5(9):e1000520. https://doi.org/10.1371/journal.pcbi.1000520 PMID: 19779555
-
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7(1):214. https://doi.org/10.1186/1471-2148-7-214 PMID: 17996036
-
Shapiro B, Ho SY, Drummond AJ, Suchard MA, Pybus OG, Rambaut A. A Bayesian phylogenetic method to estimate unknown sequence ages. Mol Biol Evol. 2011;28(2):879-87. https://doi.org/10.1093/molbev/msq262 PMID: 20889726
-
Suchard MA, Rambaut A. Many-core algorithms for statistical phylogenetics. Bioinformatics. 2009;25(11):1370-6. https://doi.org/10.1093/bioinformatics/btp244 PMID: 19369496
-
Bielejec F, Baele G, Vrancken B, Suchard MA, Rambaut A, Lemey P. SpreaD3: Interactive visualization of spatiotemporal history and trait evolutionary processes. Mol Biol Evol. 2016;33(8):2167-9. https://doi.org/10.1093/molbev/msw082 PMID: 27189542
-
Rossow H, Seppä-Lassila L, Joutsen S, Järvelä T, Tuominen P. Zoonoses on fur farms – risk profile. Finnish Food Authority Research Reports 4/2023. Helsinki: Finnish Food Authority; 2023. Available from: http://hdl.handle.net/10138/564730
-
Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol. 2010;84(9):4395-406. https://doi.org/10.1128/JVI.02642-09 PMID: 20181719
-
Zhang H, Li X, Guo J, Li L, Chang C, Li Y, et al. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J Gen Virol. 2014;95(Pt 4):779-86. https://doi.org/10.1099/vir.0.061721-0 PMID: 24394699
-
Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol. 1993;67(4):1761-4. https://doi.org/10.1128/jvi.67.4.1761-1764.1993 PMID: 8445709
-
Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen H-L, Hulse-Post DJ, et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med. 2006;203(3):689-97. https://doi.org/10.1084/jem.20051938 PMID: 16533883
-
Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog. 2009;5(1):e1000252. https://doi.org/10.1371/journal.ppat.1000252 PMID: 19119420
-
Du W, Guo H, Nijman VS, Doedt J, van der Vries E, van der Lee J, et al. The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathog. 2019;15(6):e1007860. https://doi.org/10.1371/journal.ppat.1007860 PMID: 31181126
-
Du W, de Vries E, van Kuppeveld FJM, Matrosovich M, de Haan CAM. Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS J. 2021;288(19):5598-612. https://doi.org/10.1111/febs.15668 PMID: 33314755
-
Danzy S, Studdard LR, Manicassamy B, Solorzano A, Marshall N, García-Sastre A, et al. Mutations to PB2 and NP proteins of an avian influenza virus combine to confer efficient growth in primary human respiratory cells. J Virol. 2014;88(22):13436-46. https://doi.org/10.1128/JVI.01093-14 PMID: 25210184
-
Fan S, Hatta M, Kim JH, Halfmann P, Imai M, Macken CA, et al. Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. Nat Commun. 2014;5(1):5021. https://doi.org/10.1038/ncomms6021 PMID: 25289523
Data & Media loading...