1887
Systematic Review Open Access
Like 0

Abstract

Background

To be better prepared for emerging wildlife-borne zoonoses, we need to strengthen wildlife disease surveillance.

Aim

The aim of this study was to create a topical overview of zoonotic pathogens in wildlife species to identify knowledge gaps and opportunities for improvement of wildlife disease surveillance.

Methods

We created a database, which is based on a systematic literature review in Embase focused on zoonotic pathogens in 10 common urban wildlife mammals in Europe, namely brown rats, house mice, wood mice, common voles, red squirrels, European rabbits, European hedgehogs, European moles, stone martens and red foxes. In total, we retrieved 6,305 unique articles of which 882 were included.

Results

In total, 186 zoonotic pathogen species were described, including 90 bacteria, 42 helminths, 19 protozoa, 22 viruses and 15 fungi. Most of these pathogens were only studied in one single animal species. Even considering that some pathogens are relatively species-specific, many European countries have no (accessible) data on zoonotic pathogens in these relevant animal species. We used the Netherlands as an example to show how this database can be used by other countries to identify wildlife disease surveillance gaps on a national level. Only 4% of all potential host–pathogen combinations have been studied in the Netherlands.

Conclusions

This database comprises a comprehensive overview that can guide future research on wildlife-borne zoonotic diseases both on a European and national scale. Sharing and expanding this database provides a solid starting point for future European-wide collaborations to improve wildlife disease surveillance.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.25.2300617
2024-06-20
2024-06-30
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.25.2300617
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/25/eurosurv-29-25_5.html?itemId=/content/10.2807/1560-7917.ES.2024.29.25.2300617&mimeType=html&fmt=ahah

References

  1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990-3.  https://doi.org/10.1038/nature06536  PMID: 18288193 
  2. Dobigny G, Morand S. Zoonotic emergence at the animal-environment-human interface: the forgotten urban socio-ecosystems. Peer Community J. 2022;2:e79.  https://doi.org/10.24072/pcjournal.206 
  3. Bengis RG, Leighton FA, Fischer JR, Artois M, Mörner T, Tate CM. The role of wildlife in emerging and re-emerging zoonoses. Rev Sci Tech. 2004;23(2):497-511. PMID: 15702716 
  4. Chomel BB, Belotto A, Meslin F-X. Wildlife, exotic pets, and emerging zoonoses. Emerg Infect Dis. 2007;13(1):6-11.  https://doi.org/10.3201/eid1301.060480  PMID: 17370509 
  5. Williams EP, Spruill-Harrell BM, Taylor MK, Lee J, Nywening AV, Yang Z, et al. Common themes in zoonotic spillover and disease emergence: lessons learned from bat-and rodent-borne RNA viruses. Viruses. 2021;13(8):1509.  https://doi.org/10.3390/v13081509  PMID: 34452374 
  6. Mills JN, Gage KL, Khan AS. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect. 2010;118(11):1507-14.  https://doi.org/10.1289/ehp.0901389  PMID: 20576580 
  7. World Health Organization Regional Office for Europe (WHO/Europe). Coronavirus disease (COVID-19) pandemic. Copenhagen: WHO/Europe; 2023. Available from: https://www.who.int/europe/emergencies/situations/covid-19
  8. Clemente-Suárez VJ, Navarro-Jiménez E, Moreno-Luna L, Saavedra-Serrano MC, Jimenez M, Simón JA, et al. The impact of the COVID-19 pandemic on social, health, and economy. Sustainability (Basel). 2021;13(11):6314.  https://doi.org/10.3390/su13116314 
  9. Qiu W, Rutherford S, Mao A, Chu C. The pandemic and its impacts. Health Cult Soc (Pittsburgh Pa). 2017;9:1-11.  https://doi.org/10.5195/HCS.2017.221 
  10. Lytras S, Xia W, Hughes J, Jiang X, Robertson DL. The animal origin of SARS-CoV-2. Science. 2021;373(6558):968-70.  https://doi.org/10.1126/science.abh0117  PMID: 34404734 
  11. McFarlane R, Sleigh A, McMichael T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth. 2012;9(1):24-35.  https://doi.org/10.1007/s10393-012-0763-9  PMID: 22526750 
  12. Han BA, Schmidt JP, Bowden SE, Drake JM. Rodent reservoirs of future zoonotic diseases. Proc Natl Acad Sci USA. 2015;112(22):7039-44.  https://doi.org/10.1073/pnas.1501598112  PMID: 26038558 
  13. Rothenburger JL, Himsworth CH, Nemeth NM, Pearl DL, Jardine CM. Environmental factors and zoonotic pathogen ecology in urban exploiter species. EcoHealth. 2017;14(3):630-41.  https://doi.org/10.1007/s10393-017-1258-5  PMID: 28631116 
  14. Dubey JP. Advances in the life cycle of Toxoplasma gondii. Int J Parasitol. 1998;28(7):1019-24.  https://doi.org/10.1016/S0020-7519(98)00023-X  PMID: 9724872 
  15. Weaver SC, Barrett AD. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol. 2004;2(10):789-801.  https://doi.org/10.1038/nrmicro1006  PMID: 15378043 
  16. Woolhouse ME, Gowtage-Sequeria S. Host range and emerging and reemerging pathogens. Emerg Infect Dis. 2005;11(12):1842-7.  https://doi.org/10.3201/eid1112.050997  PMID: 16485468 
  17. Aronson MF, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc Biol Sci. 2014;281(1780):20133330.  https://doi.org/10.1098/rspb.2013.3330  PMID: 24523278 
  18. Beninde J, Veith M, Hochkirch A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett. 2015;18(6):581-92.  https://doi.org/10.1111/ele.12427  PMID: 25865805 
  19. Gallo T, Fidino M, Lehrer EW, Magle SB. Mammal diversity and metacommunity dynamics in urban green spaces: implications for urban wildlife conservation. Ecol Appl. 2017;27(8):2330-41.  https://doi.org/10.1002/eap.1611  PMID: 28833978 
  20. Threlfall CG, Mata L, Mackie JA, Hahs AK, Stork NE, Williams NS, et al. Increasing biodiversity in urban green spaces through simple vegetation interventions. J Appl Ecol. 2017;54(6):1874-83.  https://doi.org/10.1111/1365-2664.12876 
  21. Magle SB, Hunt VM, Vernon M, Crooks KR. Urban wildlife research: past, present, and future. Biol Conserv. 2012;155:23-32.  https://doi.org/10.1016/j.biocon.2012.06.018 
  22. Brearley G, Rhodes J, Bradley A, Baxter G, Seabrook L, Lunney D, et al. Wildlife disease prevalence in human-modified landscapes. Biol Rev Camb Philos Soc. 2013;88(2):427-42.  https://doi.org/10.1111/brv.12009  PMID: 23279314 
  23. Bradley CA, Altizer S. Urbanization and the ecology of wildlife diseases. Trends Ecol Evol. 2007;22(2):95-102.  https://doi.org/10.1016/j.tree.2006.11.001  PMID: 17113678 
  24. Selçuk AA. A guide for systematic reviews: PRISMA. Turk Arch Otorhinolaryngol. 2019;57(1):57-8.  https://doi.org/10.5152/tao.2019.4058  PMID: 31049257 
  25. Havelaar AH, van Rosse F, Bucura C, Toetenel MA, Haagsma JA, Kurowicka D, et al. Prioritizing emerging zoonoses in the Netherlands. PLoS One. 2010;5(11):e13965.  https://doi.org/10.1371/journal.pone.0013965  PMID: 21085625 
  26. Van der Giessen J, van De Giessen A, Braks M. Emerging zoonoses: early warning and surveillance in the Netherlands. RIVM rapport 330214002. 2010. Available from: https://www.rivm.nl/bibliotheek/rapporten/330214002.pdf
  27. International Union for Conservation of Nature (IUCN) Biodiversity Assessment & Knowledge Team. The IUCN red list of threatened species. Version 2022-2. Cambridge: IUCN. [accessed: 1 Jan 2023]. Available from: https://www.iucnredlist.org
  28. RStudio team. RStudio: integrated development for R. Boston: RStudio; 2023. Available from: http://www rstudio com
  29. Han BA, Kramer AM, Drake JM. Global patterns of zoonotic disease in mammals. Trends Parasitol. 2016;32(7):565-77.  https://doi.org/10.1016/j.pt.2016.04.007  PMID: 27316904 
  30. Braks M, van der Giessen J, Kretzschmar M, van Pelt W, Scholte E-J, Reusken C, et al. Towards an integrated approach in surveillance of vector-borne diseases in Europe. Parasit Vectors. 2011;4(1):192.  https://doi.org/10.1186/1756-3305-4-192  PMID: 21967706 
  31. Ready PD. Leishmaniasis emergence in Europe. Euro Surveill. 2010;15(10):19505.  https://doi.org/10.2807/ese.15.10.19505-en  PMID: 20403308 
  32. Shaw SE, Langton DA, Hillman TJ. Canine leishmaniosis in the United Kingdom: a zoonotic disease waiting for a vector? Vet Parasitol. 2009;163(4):281-5.  https://doi.org/10.1016/j.vetpar.2009.03.025  PMID: 19369005 
  33. Woolhouse ME, Taylor LH, Haydon DT. Population biology of multihost pathogens. Science. 2001;292(5519):1109-12.  https://doi.org/10.1126/science.1059026  PMID: 11352066 
  34. Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol. 2006;21(4):186-91.  https://doi.org/10.1016/j.tree.2005.11.019  PMID: 16701084 
  35. Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious diseases. Nature. 2007;447(7142):279-83.  https://doi.org/10.1038/nature05775  PMID: 17507975 
  36. Hopkins ME, Nunn CL. A global gap analysis of infectious agents in wild primates. Divers Distrib. 2007;13(5):561-72.  https://doi.org/10.1111/j.1472-4642.2007.00364.x 
  37. Esser HJ, Lim SM, de Vries A, Sprong H, Dekker DJ, Pascoe EL, et al. Continued circulation of tick-borne encephalitis virus variants and detection of novel transmission foci, the Netherlands. Emerg Infect Dis. 2022;28(12):2416-24.  https://doi.org/10.3201/eid2812.220552  PMID: 36288572 
  38. Soulsbury CD, Gray HE, Smith LM, Braithwaite V, Cotter SC, Elwood RW, et al. The welfare and ethics of research involving wild animals: A primer. Methods Ecol Evol. 2020;11(10):1164-81.  https://doi.org/10.1111/2041-210X.13435 
  39. Elliott SP. Rat bite fever and Streptobacillus moniliformis. Clin Microbiol Rev. 2007;20(1):13-22.  https://doi.org/10.1128/CMR.00016-06  PMID: 17223620 
  40. Fawzy A, Giel A-S, Fenske L, Bach A, Herden C, Engel K, et al. Development and validation of a triplex real-time qPCR for sensitive detection and quantification of major rat bite fever pathogen Streptobacillus moniliformis. J Microbiol Methods. 2022;199:106525.  https://doi.org/10.1016/j.mimet.2022.106525  PMID: 35738493 
  41. Mlinarić A, Horvat M, Šupak Smolčić V. Dealing with the positive publication bias: Why you should really publish your negative results. Biochem Med (Zagreb). 2017;27(3):030201.  https://doi.org/10.11613/BM.2017.030201  PMID: 29180912 
  42. European Centre for Disease Prevention and Control (ECDC). Disease and laboratory networks. Stockholm: ECDC. [Accessed: 1 Sep 2023]. Available from: https://www.ecdc.europa.eu/en/about-ecdc/what-we-do/partners-and-networks/disease-and-laboratory-networks
  43. Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS One. 2012;7(1):e29715.  https://doi.org/10.1371/journal.pone.0029715  PMID: 22238640 
/content/10.2807/1560-7917.ES.2024.29.25.2300617
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error