1887
Research Open Access
Like 0

Abstract

Background

The EUSeqMyTB project, conducted in 2020, used whole genome sequencing (WGS) for surveillance of drug-resistant in the European Union/European Economic Area (EU/EEA) and identified 56 internationally clustered multidrug-resistant (MDR) tuberculosis (TB) clones.

Aim

We aimed to define and establish a rapid and computationally simple screening method to identify probable members of the main cross-border MDR-TB clusters in WGS data to facilitate their identification and track their future spread.

Methods

We screened 34 of the larger cross-border clusters identified in the EuSeqMyTB pilot study (2017–19) for characteristic single nucleotide polymorphism (SNP) signatures that could identify and define members of each cluster. We also linked this analysis with published clusters identified in previous studies and identified more distant genetic relationships between some of the current clusters.

Results

A panel of 30 characteristic SNPs is presented that can be used as an initial (routine) screen for members of each cluster. For four of the clusters, no unique defining SNP could be identified; three of these are closely related (within approximately 20 SNPs) to one or more other clusters and likely represent a single established MDR-TB clade composed of multiple recent subclusters derived from the previously described ECDC0002 cluster.

Conclusion

The identified SNP signatures can be integrated into routine pipelines and contribute to the more effective monitoring, rapid and widespread screening for TB. This SNP panel will also support accurate communication between laboratories about previously identified internationally transmitted MDR-TB genotypes.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.12.2300583
2024-03-21
2024-11-21
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.12.2300583
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/12/eurosurv-29-12_2.html?itemId=/content/10.2807/1560-7917.ES.2024.29.12.2300583&mimeType=html&fmt=ahah

References

  1. Tagliani E, Anthony R, Kohl TA, de Neeling A, Nikolayevskyy V, Ködmön C, et al. Use of a whole genome sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017-2019: an ECDC pilot study. Eur Respir J. 2021;57(1):2002272.  https://doi.org/10.1183/13993003.02272-2020  PMID: 32732329 
  2. Kohl TA, Utpatel C, Schleusener V, De Filippo MR, Beckert P, Cirillo DM, et al. MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ. 2018;6:e5895.  https://doi.org/10.7717/peerj.5895  PMID: 30479891 
  3. Meehan CJ, Moris P, Kohl TA, Pečerska J, Akter S, Merker M, et al. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine. 2018;37:410-6.  https://doi.org/10.1016/j.ebiom.2018.10.013  PMID: 30341041 
  4. Jajou R, de Neeling A, van Hunen R, de Vries G, Schimmel H, Mulder A, et al. Epidemiological links between tuberculosis cases identified twice as efficiently by whole genome sequencing than conventional molecular typing: A population-based study. PLoS One. 2018;13(4):e0195413.  https://doi.org/10.1371/journal.pone.0195413  PMID: 29617456 
  5. Nikolayevskyy V, Niemann S, Anthony R, van Soolingen D, Tagliani E, Ködmön C, et al. Role and value of whole genome sequencing in studying tuberculosis transmission. Clin Microbiol Infect. 2019;25(11):1377-82.  https://doi.org/10.1016/j.cmi.2019.03.022  PMID: 30980928 
  6. Abascal E, Herranz M, Acosta F, Agapito J, Cabibbe AM, Monteserin J, et al. Screening of inmates transferred to Spain reveals a Peruvian prison as a reservoir of persistent Mycobacterium tuberculosis MDR strains and mixed infections. Sci Rep. 2020;10(1):2704.  https://doi.org/10.1038/s41598-020-59373-w  PMID: 32066749 
  7. Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5(1):4812.  https://doi.org/10.1038/ncomms5812  PMID: 25176035 
  8. De Beer JL, Kodmon C, van der Werf MJ, van Ingen J, van Soolingen D, the ECDC MDR-TB molecular surveillance project participants C, et al. Molecular surveillance of multi- and extensively drug-resistant tuberculosis transmission in the European Union from 2003 to 2011. Euro Surveill. 2014;19(11):19.  https://doi.org/10.2807/1560-7917.ES2014.19.11.20742  PMID: 24679719 
  9. de Beer JL, Bergval I, Schuitema A, Anthony RM, Fauville-Dufaux M, Ferro BE, et al. “A unique mutation in the rpoC-gene exclusively detected in Mycobacterium tuberculosis isolates of the largest cluster of multidrug resistant cases of the Beijing genotype in Europe.” De Beer PhD thesis. Molecular typing of Mycobacterium tuberculosis complex: 2019;105.
  10. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014;1151:165-88.  https://doi.org/10.1007/978-1-4939-0554-6_12  PMID: 24838886 
  11. Vyazovaya A, Mokrousov I, Solovieva N, Mushkin A, Manicheva O, Vishnevsky B, et al. Tuberculous spondylitis in Russia and prominent role of multidrug-resistant clone Mycobacterium tuberculosis Beijing B0/W148. Antimicrob Agents Chemother. 2015;59(4):2349-57.  https://doi.org/10.1128/AAC.04221-14  PMID: 25645851 
  12. Jajou R, Kohl TA, Walker T, Norman A, Cirillo DM, Tagliani E, et al. Towards standardisation: comparison of five whole genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked tuberculosis cases. Euro Surveill. 2019;24(50):1900130.  https://doi.org/10.2807/1560-7917.ES.2019.24.50.1900130  PMID: 31847944 
  13. Modlin SJ, Robinhold C, Morrissey C, Mitchell SN, Ramirez-Busby SM, Shmaya T, et al. Exact mapping of Illumina blind spots in the Mycobacterium tuberculosis genome reveals platform-wide and workflow-specific biases. Microb Genom. 2021;7(3):000465.  https://doi.org/10.1099/mgen.0.000465  PMID: 33502304 
  14. Heupink TH, Verboven L, Sharma A, Rennie V, de Diego Fuertes M, Warren RM, et al. The MAGMA pipeline for comprehensive genomic analyses of clinical Mycobacterium tuberculosis samples. PLOS Comput Biol. 2023;19(11):e1011648.  https://doi.org/10.1371/journal.pcbi.1011648  PMID: 38019772 
  15. Devaux I, Kremer K, Heersma H, Van Soolingen D. Clusters of multidrug-resistant Mycobacterium tuberculosis cases, Europe. Emerg Infect Dis. 2009;15(7):1052-60.  https://doi.org/10.3201/eid1507.080994  PMID: 19624920 
  16. Mokrousov I. Insights into the origin, emergence, and current spread of a successful Russian clone of Mycobacterium tuberculosis. Clin Microbiol Rev. 2013;26(2):342-60.  https://doi.org/10.1128/CMR.00087-12  PMID: 23554420 
  17. Shitikov E, Vyazovaya A, Malakhova M, Guliaev A, Bespyatykh J, Proshina E, et al. Simple assay for detection of the Central Asia Outbreak clade of the Mycobacterium tuberculosis Beijing genotype. J Clin Microbiol. 2019;57(7):e00215-19.  https://doi.org/10.1128/JCM.00215-19  PMID: 31043465 
  18. Shitikov E, Bespiatykh D. A revised SNP-based barcoding scheme for typing Mycobacterium tuberculosis complex isolates. MSphere. 2023;8(4):e0016923.  https://doi.org/10.1128/msphere.00169-23  PMID: 37314207 
  19. Allix-Béguec C, Wahl C, Hanekom M, Nikolayevskyy V, Drobniewski F, Maeda S, et al. Proposal of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci for subtyping of Mycobacterium tuberculosis Beijing isolates. J Clin Microbiol. 2014;52(1):164-72.  https://doi.org/10.1128/JCM.02519-13  PMID: 24172154 
  20. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet. 2011;44(1):106-10.  https://doi.org/10.1038/ng.1038  PMID: 22179134 
/content/10.2807/1560-7917.ES.2024.29.12.2300583
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error