1887
Research Open Access
Like 0

Abstract

Background

Lateral flow antigen-detection rapid diagnostic tests (Ag-RDTs) for viral infections constitute a fast, cheap and reliable alternative to nucleic acid amplification tests (NAATs). Whereas leftover material from NAATs can be employed for genomic analysis of positive samples, there is a paucity of information on whether viral genetic characterisation can be achieved from archived Ag-RDTs.

Aim

To evaluate the possibility of retrieving leftover material of several viruses from a range of Ag-RDTs, for molecular genetic analysis.

Methods

Archived Ag-RDTs which had been stored for up to 3 months at room temperature were used to extract viral nucleic acids for subsequent RT-qPCR, Sanger sequencing and Nanopore whole genome sequencing. The effects of brands of Ag-RDT and of various ways to prepare Ag-RDT material were evaluated.

Results

SARS-CoV-2 nucleic acids were successfully extracted and sequenced from nine different brands of Ag-RDTs for SARS-CoV-2, and for five of these, after storage for 3 months at room temperature. The approach also worked for Ag-RDTs for influenza virus (n = 3 brands), as well as for rotavirus and adenovirus 40/41 (n = 1 brand). The buffer of the Ag-RDT had an important influence on viral RNA yield from the test strip and the efficiency of subsequent sequencing.

Conclusion

Our finding that the test strip in Ag-RDTs is suited to preserve viral genomic material, even for several months at room temperature, and therefore can serve as source material for genetic characterisation could help improve global coverage of genomic surveillance for SARS-CoV-2 as well as for other viruses.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.9.2200618
2023-03-02
2024-12-05
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.9.2200618
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/9/eurosurv-28-9-2.html?itemId=/content/10.2807/1560-7917.ES.2023.28.9.2200618&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. Geneva: WHO. [Accessed 13 Sep 2022]. Available from: https://covid19.who.int/
  2. Marcelin JR, Pettifor A, Janes H, Brown ER, Kublin JG, Stephenson KE. COVID-19 Vaccines and SARS-CoV-2 Transmission in the Era of New Variants: A Review and Perspective. Open Forum Infect Dis. 2022;9(5):ofac124.  https://doi.org/10.1093/ofid/ofac124  PMID: 35493113 
  3. Pilkington V, Keestra SM, Hill A. Global COVID-19 Vaccine Inequity: Failures in the First Year of Distribution and Potential Solutions for the Future. Front Public Health. 2022;10(March):821117.  https://doi.org/10.3389/fpubh.2022.821117  PMID: 35321196 
  4. Corman VM, Haage VC, Bleicker T, Schmidt ML, Mühlemann B, Zuchowski M, et al. Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: a single-centre laboratory evaluation study. Lancet Microbe. 2021;2(7):e311-9.  https://doi.org/10.1016/S2666-5247(21)00056-2  PMID: 33846704 
  5. Kohmer N, Toptan T, Pallas C, Karaca O, Pfeiffer A, Westhaus S, et al. The Comparative Clinical Performance of Four SARS-CoV-2 Rapid Antigen Tests and Their Correlation to Infectivity In Vitro. J Clin Med. 2021;10(2):1-11.  https://doi.org/10.3390/jcm10020328  PMID: 33477365 
  6. Kam KQ, Maiwald M, Chong CY, Thoon KC, Nadua KD, Loo LH, et al. SARS-CoV-2 antigen rapid tests and universal screening for COVID-19 Omicron variant among hospitalized children. Am J Infect Control. 2022;S0196-6553(22)00784-2.  https://doi.org/10.1016/j.ajic.2022.11.002  PMID: 36370867 
  7. Osterman A, Badell I, Dächert C, Schneider N, Kaufmann A-Y, Öztan GN, et al. Variable detection of Omicron-BA.1 and -BA.2 by SARS-CoV-2 rapid antigen tests. Med Microbiol Immunol (Berl). 2023;212(1):13-23.  https://doi.org/10.1007/s00430-022-00752-7  PMID: 36370197 
  8. World Health Organization (WHO). Antigen-detection in the diagnosis of SARS-CoV-2 infection. Interim Guidance. Geneva: WHO; 2021;(6 October). Available from: https://apps.who.int/iris/handle/10665/345948
  9. World Health Organization (WHO). Use of SARS-CoV-2 antigen-detection rapid diagnostic tests for COVID-19 self-testing. Interim Guidance. Geneva: WHO; 2022;(9 March):1-16. Available from: https://apps.who.int/iris/handle/10665/352347
  10. World Health Organization (WHO). Tracking SARS-CoV-2 variants. Geneva: WHO. [Accessed 16 May 2022]. Available from: https://www.who.int/activities/tracking-SARS-CoV-2-variants
  11. European Centre for Disease Prevention and Control (ECDC). SARS-CoV-2 variants of concern as of 12 May 2022. Stockholm: ECDC. [Accessed 16 May 2022]. Available from: https://www.ecdc.europa.eu/en/covid-19/variants-concern
  12. Robishaw JD, Alter SM, Solano JJ, Shih RD, DeMets DL, Maki DG, et al. Genomic surveillance to combat COVID-19: challenges and opportunities. Lancet Microbe. 2021;2(9):e481-4.  https://doi.org/10.1016/S2666-5247(21)00121-X  PMID: 34337584 
  13. World Health Organization (WHO). Recommendations For National SARS-Cov-2 Testing Strategies And Diagnostic Capacities. Interim Guidance. Geneva: WHO; 2021 (June 25):1-16. Available from: https://apps.who.int/iris/handle/10665/342002
  14. World Health Organization (WHO). Genomic sequencing of SARS-CoV-2. Geneva: WHO; 2021. 94 p.
  15. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403-7.  https://doi.org/10.1038/s41564-020-0770-5  PMID: 32669681 
  16. Bloemen M, Rector A, Swinnen J, Ranst MV, Maes P, Vanmechelen B, et al. Fast detection of SARS-CoV-2 variants including Omicron using one-step RT-PCR and Sanger sequencing. J Virol Methods. 2022;304(March):114512.  https://doi.org/10.1016/j.jviromet.2022.114512  PMID: 35257682 
  17. Wollants E, Maes P, Thoelen I, Vanneste F, Rahman M, Van Ranst M. Evaluation of a norovirus sampling method using sodium dodecyl sulfate/EDTA-pretreated chromatography paper strips. J Virol Methods. 2004;122(1):45-8.  https://doi.org/10.1016/j.jviromet.2004.08.001  PMID: 15488619 
  18. Maes P, Van Doren E, Denys B, Thoelen I, Rahman M, Vijgen L, et al. Poliovirus sampling by using sodium dodecyl sulfate/EDTA-pretreated chromatography paper strips. Biochem Biophys Res Commun. 2004;325(3):711-5.  https://doi.org/10.1016/j.bbrc.2004.10.084  PMID: 15541347 
  19. Rahman M, Goegebuer T, De Leener K, Maes P, Matthijnssens J, Podder G, et al. Chromatography paper strip method for collection, transportation, and storage of rotavirus RNA in stool samples. J Clin Microbiol. 2004;42(4):1605-8.  https://doi.org/10.1128/JCM.42.4.1605-1608.2004  PMID: 15071012 
  20. Zlateva KT, Maes P, Rahman M, Van Ranst M. Chromatography paper strip sampling of enteric adenoviruses type 40 and 41 positive stool specimens. Virol J. 2005;2(1):6.  https://doi.org/10.1186/1743-422X-2-6  PMID: 15705203 
  21. European Centre for Disease Prevention and Control (ECDC). Increase in severe acute hepatitis cases of unknown aetiology in children. Rapid Risk Assessment. Stockholm: ECDC; 2022;(April 28):1-19.
  22. Baker JM, Buchfellner M, Britt W, Sanchez V, Potter JL, Ingram LA, et al. Acute Hepatitis and Adenovirus Infection Among Children - Alabama, October 2021-February 2022. MMWR Morb Mortal Wkly Rep. 2022;71(18):638-40.  https://doi.org/10.15585/mmwr.mm7118e1  PMID: 35511732 
  23. Marsh K, Tayler R, Pollock L, Roy K, Lakha F, Ho A, et al. Investigation into cases of hepatitis of unknown aetiology among young children, Scotland, 1 January 2022 to 12 April 2022. Euro Surveill. 2022;27(15):1-7.  https://doi.org/10.2807/1560-7917.ES.2022.27.15.2200318  PMID: 35426362 
  24. Schweiger B, Zadow I, Heckler R, Timm H, Pauli G. Application of a fluorogenic PCR assay for typing and subtyping of influenza viruses in respiratory samples. J Clin Microbiol. 2000;38(4):1552-8.  https://doi.org/10.1128/JCM.38.4.1552-1558.2000  PMID: 10747142 
  25. Allard A, Albinsson B, Wadell G. Rapid typing of human adenoviruses by a general PCR combined with restriction endonuclease analysis. J Clin Microbiol. 2001;39(2):498-505.  https://doi.org/10.1128/JCM.39.2.498-505.2001  PMID: 11158096 
  26. Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, et al. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol. 1990;28(2):276-82.  https://doi.org/10.1128/jcm.28.2.276-282.1990  PMID: 2155916 
  27. Wawina-Bokalanga T, Martí-Carreras J, Vanmechelen B, Bloemen M, Wollants E, Laenen L, et al. Genetic diversity and evolution of SARS-CoV-2 in Belgium during the first wave outbreak. bioRxiv. 2021;2021.06.29.450330 http://dx.doi.org/.
  28. Nazario-Toole A, Nguyen HM, Xia H, Frankel DN, Kieffer JW, Gibbons TF. Sequencing SARS-CoV-2 from antigen tests. PLoS One. 2022;17(2):e0263794.  https://doi.org/10.1371/journal.pone.0263794  PMID: 35134077 
  29. Macori G, Russell T, Barry G, McCarthy SC, Koolman L, Wall P, et al. Inactivation and Recovery of High Quality RNA From Positive SARS-CoV-2 Rapid Antigen Tests Suitable for Whole Virus Genome Sequencing. Front Public Health. 2022;10(May):863862.  https://doi.org/10.3389/fpubh.2022.863862  PMID: 35592078 
  30. Martin GE, Taiaroa G, Taouk ML, Savic I, O’Keefe J, Quach R, et al. Maintaining genomic surveillance using whole-genome sequencing of SARS-CoV-2 from rapid antigen test devices. Lancet Infect Dis. 2022;22(10):1417-8.  https://doi.org/10.1016/S1473-3099(22)00512-6  PMID: 35934015 
  31. Academic research | UZ Leuven. [Accessed 29 Mar 2022]. Available from: https://www.uzleuven.be/en/consultation-and-admission/care/academic-research
/content/10.2807/1560-7917.ES.2023.28.9.2200618
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error