1887
Research Open Access
Like 0

Abstract

Introduction

Enterococci harbouring genes encoding resistance to florfenicol and the oxazolidinone antimicrobial linezolid have emerged among food-producing animals and meat thereof, but few studies have analysed their occurrence in raw meat-based diets (RMBDs) for pets.

Aim

We aimed to examine how far RMBDs may represent a source of bacteria with oxazolidinone resistance genes.

Methods

Fifty-nine samples of different types of RMBDs from 10 suppliers (three based in Germany, seven in Switzerland) were screened for florfenicol-resistant Gram-positive bacteria using a selective culture medium. Isolates were phenotypically and genotypically characterised.

Results

A total of 27 , , and isolates were obtained from 24 of the 59 samples. The , , and genes were identified in 24/27, 6/27 and 5/27 isolates, respectively. Chloramphenicol and linezolid minimum inhibitory concentrations (MICs) ranged from 24.0 mg/L–256.0 mg/L, and 1.5 mg/L–8.0 mg/L, respectively. According to the Clinical and Laboratory Standards Institute (CLSI) breakpoints, 26 of 27 isolates were resistant to chloramphenicol (MICs ≥ 32 mg/L), and two were resistant to linezolid (MICs ≥ 8 mg/L). Multilocus sequence typing analysis of the 17 isolates identified 10 different sequence types (ST)s, with ST593 (n = 4 isolates) and ST207 (n = 2 isolates) occurring more than once, and two novel STs (n = 2 isolates). isolates belonged to four different STs (168, 264, 822, and 1846).

Conclusion

The high occurrence in our sample of Gram-positive bacteria harbouring genes encoding resistance to the critical antimicrobial linezolid is of concern since such bacteria may spread from companion animals to humans upon close contact between pets and their owners.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.6.2200496
2023-02-09
2024-11-21
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.6.2200496
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/6/eurosurv-28-6-2.html?itemId=/content/10.2807/1560-7917.ES.2023.28.6.2200496&mimeType=html&fmt=ahah

References

  1. Davies RH, Lawes JR, Wales AD. Raw diets for dogs and cats: a review, with particular reference to microbiological hazards. J Small Anim Pract. 2019;60(6):329-39.  https://doi.org/10.1111/jsap.13000  PMID: 31025713 
  2. Morelli G, Bastianello S, Catellani P, Ricci R. Raw meat-based diets for dogs: survey of owners’ motivations, attitudes and practices. BMC Vet Res. 2019;15(1):74.  https://doi.org/10.1186/s12917-019-1824-x  PMID: 30832667 
  3. Fredriksson-Ahomaa M, Heikkilä T, Pernu N, Kovanen S, Hielm-Björkman A, Kivistö R. Raw meat-based diets in dogs and cats. Vet Sci. 2017;4(3):33.  https://doi.org/10.3390/vetsci4030033  PMID: 29056692 
  4. World Health Organization (WHO). Global antimicrobial resistance and use surveillance system (GLASS) report: 2021. Geneva: WHO; 2021. Available from: https://www.who.int/publications/i/item/9789240027336
  5. Aarestrup FM. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos Trans R Soc Lond B Biol Sci. 2015;370(1670):20140085.  https://doi.org/10.1098/rstb.2014.0085  PMID: 25918442 
  6. Kehrenberg C, Schwarz S. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob Agents Chemother. 2004;48(2):615-8.  https://doi.org/10.1128/AAC.48.2.615-618.2004  PMID: 14742219 
  7. Antonelli A, D’Andrea MM, Brenciani A, Galeotti CL, Morroni G, Pollini S, et al. Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin. J Antimicrob Chemother. 2018;73(7):1763-9.  https://doi.org/10.1093/jac/dky088  PMID: 29635422 
  8. Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015;70(8):2182-90.  https://doi.org/10.1093/jac/dkv116  PMID: 25977397 
  9. Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, et al. Mobile oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria. Clin Microbiol Rev. 2021;34(3):e0018820.  https://doi.org/10.1128/CMR.00188-20  PMID: 34076490 
  10. World Health Organization (WHO). Critically important antimicrobials for human medicine. 6th revision: 2019. Geneva: WHO; 2019. Available from: https://www.who.int/publications/i/item/9789241515528
  11. Timmermans M, Bogaerts B, Vanneste K, De Keersmaecker SCJ, Roosens NHC, Kowalewicz C, et al. Large diversity of linezolid-resistant isolates discovered in food-producing animals through linezolid selective monitoring in Belgium in 2019. J Antimicrob Chemother. 2021;77(1):49-57.  https://doi.org/10.1093/jac/dkab376  PMID: 34673924 
  12. Freitas AR, Tedim AP, Duarte B, Elghaieb H, Abbassi MS, Hassen A, et al. Linezolid-resistant (Tn6246:fexB-poxtA) Enterococcus faecium strains colonizing humans and bovines on different continents: similarity without epidemiological link. J Antimicrob Chemother. 2020;75(9):2416-23.  https://doi.org/10.1093/jac/dkaa227  PMID: 32607549 
  13. Nüesch-Inderbinen M, Haussmann A, Treier A, Zurfluh K, Biggel M, Stephan R. Fattening pigs are a reservoir of florfenicol-resistant enterococci harboring oxazolidinone resistance genes. J Food Prot. 2022;85(5):740-6.  https://doi.org/10.4315/JFP-21-431  PMID: 35258564 
  14. Clinical and Laboratory Standards (CLSI). Performance standards for antimicrobial susceptibility testing. Thirty-second edition. Wayne, PA; CLSI supplement M100. 2022.
  15. Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother. 2006;50(4):1156-63.  https://doi.org/10.1128/AAC.50.4.1156-1163.2006  PMID: 16569824 
  16. Guerin F, Sassi M, Dejoies L, Zouari A, Schutz S, Potrel S, et al. Molecular and functional analysis of the novel cfr(D) linezolid resistance gene identified in Enterococcus faecium. J Antimicrob Chemother. 2020;75(7):1699-703.  https://doi.org/10.1093/jac/dkaa125  PMID: 32277823 
  17. Zhu Y, Yang W, Schwarz S, Xu Q, Yang Q, Wang L, et al. Characterization of the novel optrA-carrying pseudo-compound transposon Tn7363 and an Inc18 plasmid carrying cfr(D) in Vagococcus lutrae. J Antimicrob Chemother. 2022;77(4):921-5.  https://doi.org/10.1093/jac/dkab478  PMID: 35038329 
  18. Freitas AR, Finisterra L, Tedim AP, Duarte B, Novais C, Peixe L, from the ESCMID Study Group on Food- and Water-borne Infections (EFWISG). Linezolid- and multidrug-resistant enterococci in raw commercial dog food, Europe, 2019-2020. Emerg Infect Dis. 2021;27(8):2221-4.  https://doi.org/10.3201/eid2708.204933  PMID: 34287135 
  19. Chen M, Pan H, Lou Y, Wu Z, Zhang J, Huang Y, et al. Epidemiological characteristics and genetic structure of linezolid-resistant Enterococcus faecalis. Infect Drug Resist. 2018;11:2397-409.  https://doi.org/10.2147/IDR.S181339  PMID: 30538507 
  20. Tsilipounidaki K, Gerontopoulos A, Papagiannitsis C, Petinaki E. First detection of an optrA-positive, linezolid-resistant ST16 Enterococcus faecalis from human in Greece. New Microbes New Infect. 2019;29:100515.  https://doi.org/10.1016/j.nmni.2019.01.010  PMID: 30899521 
  21. Vorobieva V, Roer L, Justesen US, Hansen F, Frimodt-Møller N, Hasman H, et al. Detection of the optrA gene in a clinical ST16 Enterococcus faecalis isolate in Denmark. J Glob Antimicrob Resist. 2017;10:12-3.  https://doi.org/10.1016/j.jgar.2017.05.002  PMID: 28572038 
  22. Zhou W, Gao S, Xu H, Zhang Z, Chen F, Shen H, et al. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China. J Glob Antimicrob Resist. 2019;17:180-6.  https://doi.org/10.1016/j.jgar.2019.01.001  PMID: 30641287 
  23. Kerschner H, Rosel AC, Hartl R, Hyden P, Stoeger A, Ruppitsch W, et al. Oxazolidinone resistance mediated by optrA in clinical Enterococcus faecalis isolates in Upper Austria: first report and characterization by whole genome sequencing. Microb Drug Resist. 2021;27(5):685-90.  https://doi.org/10.1089/mdr.2020.0098  PMID: 33090061 
  24. Cui L, Wang Y, Lv Y, Wang S, Song Y, Li Y, et al. Nationwide surveillance of novel oxazolidinone resistance gene optrA in Enterococcus isolates in China from 2004 to 2014. Antimicrob Agents Chemother. 2016;60(12):7490-3.  https://doi.org/10.1128/AAC.01256-16  PMID: 27645239 
  25. Cai J, Wang Y, Schwarz S, Lv H, Li Y, Liao K, et al. Enterococcal isolates carrying the novel oxazolidinone resistance gene optrA from hospitals in Zhejiang, Guangdong, and Henan, China, 2010-2014. Clin Microbiol Infect. 2015;21(12):1095.e1-4.  https://doi.org/10.1016/j.cmi.2015.08.007  PMID: 26319902 
  26. Jung YH, Cha MH, Woo GJ, Chi YM. Characterization of oxazolidinone and phenicol resistance genes in non-clinical enterococcal isolates from Korea. J Glob Antimicrob Resist. 2021;24:363-9.  https://doi.org/10.1016/j.jgar.2021.01.009  PMID: 33515778 
  27. Kim E, Shin S-W, Kwak H-S, Cha M-H, Yang S-M, Gwak Y-S, et al. Prevalence and characteristics of phenicol-oxazolidinone resistance genes in Enterococcus faecalis and Enterococcus faecium isolated from food-producing animals and meat in Korea. Int J Mol Sci. 2021;22(21):11335.  https://doi.org/10.3390/ijms222111335  PMID: 34768762 
  28. Li J, Yang L, Huang X, Wen Y, Zhao Q, Huang X, et al. Molecular characterization of antimicrobial resistance and virulence factors of Enterococcus faecalis from ducks at slaughterhouses. Poult Sci. 2022;101(4):101646.  https://doi.org/10.1016/j.psj.2021.101646  PMID: 35172230 
  29. Gião J, Leão C, Albuquerque T, Clemente L, Amaro A. Antimicrobial susceptibility of Enterococcus isolates from cattle and pigs in Portugal: Linezolid resistance genes optrA and poxtA. Antibiotics (Basel). 2022;11(5):615.  https://doi.org/10.3390/antibiotics11050615  PMID: 35625259 
  30. Nüesch-Inderbinen M, Raschle S, Stevens MJA, Schmitt K, Stephan R. Linezolid-resistant Enterococcus faecalis ST16 harbouring optrA on a Tn6674-like element isolated from surface water. J Glob Antimicrob Resist. 2021;25:89-92.  https://doi.org/10.1016/j.jgar.2021.02.029  PMID: 33705941 
  31. McHugh MP, Parcell BJ, Pettigrew KA, Toner G, Khatamzas E, El Sakka N, et al. Presence of optrA-mediated linezolid resistance in multiple lineages and plasmids of Enterococcus faecalis revealed by long read sequencing. Microbiology (Reading). 2022;168(2):168.  https://doi.org/10.1099/mic.0.001137  PMID: 35130141 
  32. Yu Y, Ye XQ, Liang HQ, Zhong ZX, Cheng K, Sun J, et al. Lilium spp., as unnoticed environmental vector, spreading OptrA-carrying Enterococcus spp. Sci Total Environ. 2022;816:151540.  https://doi.org/10.1016/j.scitotenv.2021.151540  PMID: 34767892 
  33. Dejoies L, Sassi M, Schutz S, Moreaux J, Zouari A, Potrel S, et al. Genetic features of the poxtA linezolid resistance gene in human enterococci from France. J Antimicrob Chemother. 2021;76(8):1978-85.  https://doi.org/10.1093/jac/dkab116  PMID: 33895846 
  34. Cai J, Schwarz S, Chi D, Wang Z, Zhang R, Wang Y. Faecal carriage of optrA-positive enterococci in asymptomatic healthy humans in Hangzhou, China. Clin Microbiol Infect. 2019;25(5):630.e1-6.  https://doi.org/10.1016/j.cmi.2018.07.025  PMID: 30076974 
  35. Freitas AR, Tedim AP, Novais C, Lanza VF, Peixe L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microb Genom. 2020;6(6):6.  https://doi.org/10.1099/mgen.0.000350  PMID: 32149599 
/content/10.2807/1560-7917.ES.2023.28.6.2200496
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error