1887
Rapid communication Open Access
Like 0

Abstract

To advance our understanding of respiratory syncytial virus (RSV) impact through genomic surveillance, we describe two PCR-based sequencing systems, (i) RSVAB-WGS for generic whole-genome sequencing and (ii) RSVAB-GF, which targets major viral antigens, G and F, and is used as a complement for challenging cases with low viral load. These methods monitor RSV genetic diversity to inform molecular epidemiology, vaccine effectiveness and treatment strategies, contributing also to the standardisation of surveillance in a new era of vaccines.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.49.2300637
2023-12-07
2024-12-27
/content/10.2807/1560-7917.ES.2023.28.49.2300637
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/49/eurosurv-28-49-2.html?itemId=/content/10.2807/1560-7917.ES.2023.28.49.2300637&mimeType=html&fmt=ahah

References

  1. Venkatesan P. First RSV vaccine approvals. Lancet Microbe. 2023;4(8):e577.  https://doi.org/10.1016/S2666-5247(23)00195-7  PMID: 37390835 
  2. Zhu Q, McLellan JS, Kallewaard NL, Ulbrandt ND, Palaszynski S, Zhang J, et al. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci Transl Med. 2017;9(388):eaaj1928.  https://doi.org/10.1126/scitranslmed.aaj1928  PMID: 28469033 
  3. Hammitt LL, Dagan R, Yuan Y, Baca Cots M, Bosheva M, Madhi SA, et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N Engl J Med. 2022;386(9):837-46.  https://doi.org/10.1056/NEJMoa2110275  PMID: 35235726 
  4. European Medicines Agency (EMA). Beyfortus. Amsterdam: EMA; 2022. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/beyfortus
  5. RSVAB WGS and GF protocols. Majadahonda: Instituto de Salud Carlos III; 2023. dx.doi.org/10.17504/protocols.io.kqdg3xbzqg25/v1
  6. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38(3):276-8.  https://doi.org/10.1038/s41587-020-0439-x  PMID: 32055031 
  7. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490.  https://doi.org/10.1371/journal.pone.0009490  PMID: 20224823 
  8. Garcia-Garcia ML, Calvo C, Ruiz S, Pozo F, Del Pozo V, Remedios L, et al. Role of viral coinfections in asthma development. PLoS One. 2017;12(12):e0189083.  https://doi.org/10.1371/journal.pone.0189083  PMID: 29206851 
  9. Goya S, Galiano M, Nauwelaers I, Trento A, Openshaw PJ, Mistchenko AS, et al. Toward unified molecular surveillance of RSV: A proposal for genotype definition. Influenza Other Respir Viruses. 2020;14(3):274-85.  https://doi.org/10.1111/irv.12715  PMID: 32022426 
  10. Ramaekers K, Rector A, Cuypers L, Lemey P, Keyaerts E, Van Ranst M. Towards a unified classification for human respiratory syncytial virus genotypes. Virus Evol. 2020;6(2):veaa052.  https://doi.org/10.1093/ve/veaa052  PMID: 33072402 
  11. Teirlinck AC, Broberg EK, Stuwitz Berg A, Campbell H, Reeves RM, Carnahan A, et al. Recommendations for respiratory syncytial virus surveillance at the national level. Eur Respir J. 2021;58(3):2003766.  https://doi.org/10.1183/13993003.03766-2020  PMID: 33888523 
  12. Malboeuf CM, Yang X, Charlebois P, Qu J, Berlin AM, Casali M, et al. Complete viral RNA genome sequencing of ultra-low copy samples by sequence-independent amplification. Nucleic Acids Res. 2013;41(1):e13.  https://doi.org/10.1093/nar/gks794  PMID: 22962364 
  13. Goya S, Valinotto LE, Tittarelli E, Rojo GL, Nabaes Jodar MS, Greninger AL, et al. An optimized methodology for whole genome sequencing of RNA respiratory viruses from nasopharyngeal aspirates. PLoS One. 2018;13(6):e0199714.  https://doi.org/10.1371/journal.pone.0199714  PMID: 29940028 
  14. Graf EH, Simmon KE, Tardif KD, Hymas W, Flygare S, Eilbeck K, et al. Unbiased detection of respiratory viruses by use of RNA Sequencing-based metagenomics: a systematic comparison to a commercial PCR panel. J Clin Microbiol. 2016;54(4):1000-7.  https://doi.org/10.1128/JCM.03060-15  PMID: 26818672 
  15. O’Flaherty BM, Li Y, Tao Y, Paden CR, Queen K, Zhang J, et al. Comprehensive viral enrichment enables sensitive respiratory virus genomic identification and analysis by next generation sequencing. Genome Res. 2018;28(6):869-77.  https://doi.org/10.1101/gr.226316.117  PMID: 29703817 
  16. Agoti CN, Otieno JR, Munywoki PK, Mwihuri AG, Cane PA, Nokes DJ, et al. Local evolutionary patterns of human respiratory syncytial virus derived from whole-genome sequencing. J Virol. 2015;89(7):3444-54.  https://doi.org/10.1128/JVI.03391-14  PMID: 25609811 
  17. Beerenwinkel N, Günthard HF, Roth V, Metzner KJ. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front Microbiol. 2012;3:329.  https://doi.org/10.3389/fmicb.2012.00329  PMID: 22973268 
  18. Holmes EC. Error thresholds and the constraints to RNA virus evolution. Trends Microbiol. 2003;11(12):543-6.  https://doi.org/10.1016/j.tim.2003.10.006  PMID: 14659685 
  19. Agoti CN, Munywoki PK, Phan MVT, Otieno JR, Kamau E, Bett A, et al. Transmission patterns and evolution of respiratory syncytial virus in a community outbreak identified by genomic analysis. Virus Evol. 2017;3(1):vex006.  https://doi.org/10.1093/ve/vex006  PMID: 28458916 
  20. Di Giallonardo F, Kok J, Fernandez M, Carter I, Geoghegan JL, Dwyer DE, et al. Evolution of human respiratory syncytial virus (RSV) over multiple seasons in New South Wales, Australia. Viruses. 2018;10(9):476.  https://doi.org/10.3390/v10090476  PMID: 30200580 
  21. Robertson M, Eden JS, Levy A, Carter I, Tulloch RL, Cutmore EJ, et al. The spatial-temporal dynamics of respiratory syncytial virus infections across the east-west coasts of Australia during 2016-17. Virus Evol. 2021;7(2):veab068.  https://doi.org/10.1093/ve/veab068  PMID: 34532066 
  22. Díez-Fuertes F, Iglesias-Caballero M, García-Pérez J, Monzón S, Jiménez P, Varona S, et al. A Founder effect led early SARS-CoV-2 transmission in Spain. J Virol. 2021;95(3):e01583-20.  https://doi.org/10.1128/JVI.01583-20  PMID: 33127745 
  23. Pérez-Sautu U, Wiley MR, Iglesias-Caballero M, Pozo F, Prieto K, Chitty JA, et al. Target-independent high-throughput sequencing methods provide evidence that already known human viral pathogens play a main role in respiratory infections with unexplained etiology. Emerg Microbes Infect. 2019;8(1):1054-65.  https://doi.org/10.1080/22221751.2019.1640587  PMID: 31335277 
/content/10.2807/1560-7917.ES.2023.28.49.2300637
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error