-
Clinical epidemiology and case fatality due to antimicrobial resistance in Germany: a systematic review and meta-analysis, 1 January 2010 to 31 December 2021
- Maria Rödenbeck1 , Olaniyi Ayobami2 , Tim Eckmanns2 , Mathias W Pletz3 , Jutta Bleidorn1 , Robby Markwart1,4
-
View Affiliations Hide AffiliationsAffiliations: 1 Institute of General Practice and Family Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany 2 Unit for Healthcare Associated Infections, Surveillance of Antimicrobial Resistance and Consumption, Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany 3 Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany 4 InfectoGnostics Research Campus Jena, Jena, GermanyRobby Markwartrobby.markwart med.uni-jena.de
-
View Citation Hide Citation
Citation style for this article: Rödenbeck Maria, Ayobami Olaniyi, Eckmanns Tim, Pletz Mathias W, Bleidorn Jutta, Markwart Robby. Clinical epidemiology and case fatality due to antimicrobial resistance in Germany: a systematic review and meta-analysis, 1 January 2010 to 31 December 2021. Euro Surveill. 2023;28(20):pii=2200672. https://doi.org/10.2807/1560-7917.ES.2023.28.20.2200672 Received: 17 Aug 2022; Accepted: 14 Feb 2023
- Previous Article
- Table of Contents
- Next Article
Abstract
Antimicrobial resistance (AMR) is of public health concern worldwide.
We aimed to summarise the German AMR situation for clinicians and microbiologists.
We conducted a systematic review and meta-analysis of 60 published studies and data from the German Antibiotic-Resistance-Surveillance (ARS). Primary outcomes were AMR proportions in bacterial isolates from infected patients in Germany (2016–2021) and the case fatality rates (2010–2021). Random and fixed (common) effect models were used to calculate pooled proportions and pooled case fatality odds ratios, respectively.
The pooled proportion of meticillin resistance in Staphylococcus aureus infections (MRSA) was 7.9% with a declining trend between 2014 and 2020 (odds ratio (OR) = 0.89; 95% CI: 0.886–0.891; p < 0.0001), while vancomycin resistance in Enterococcus faecium (VRE) bloodstream infections increased (OR = 1.18; (95% CI: 1.16–1.21); p < 0.0001) with a pooled proportion of 34.9%. Case fatality rates for MRSA and VRE were higher than for their susceptible strains (OR = 2.29; 95% CI: 1.91–2.75 and 1.69; 95% CI: 1.22–2.33, respectively). Carbapenem resistance in Gram-negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Enterobacter spp. and Escherichia coli) was low to moderate (< 9%), but resistance against third-generation cephalosporins and fluoroquinolones was moderate to high (5–25%). Pseudomonas aeruginosa exhibited high resistance against carbapenems (17.0%; 95% CI: 11.9–22.8), third-generation cephalosporins (10.1%; 95% CI: 6.6–14.2) and fluoroquinolones (24.9%; 95% CI: 19.3–30.9). Statistical heterogeneity was high (I2 > 70%) across studies reporting resistance proportions.
Continuous efforts in AMR surveillance and infection prevention and control as well as antibiotic stewardship are needed to limit the spread of AMR in Germany.
Article metrics loading...
Full text loading...
References
-
Morehead MS, Scarbrough C. Emergence of global antibiotic resistance. Prim Care. 2018;45(3):467-84. https://doi.org/10.1016/j.pop.2018.05.006 PMID: 30115335
-
Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55. https://doi.org/10.1016/S0140-6736(21)02724-0 PMID: 35065702
-
Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66. https://doi.org/10.1016/S1473-3099(18)30605-4 PMID: 30409683
-
Ayobami O, Brinkwirth S, Eckmanns T, Markwart R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: a systematic review and meta-analysis. Emerg Microbes Infect. 2022;11(1):443-51. https://doi.org/10.1080/22221751.2022.2030196 PMID: 35034585
-
Ayobami O, Willrich N, Reuss A, Eckmanns T, Markwart R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg Microbes Infect. 2020;9(1):1180-93. https://doi.org/10.1080/22221751.2020.1769500 PMID: 32498615
-
Bundesministerium für Gesundheit (BMG). DART 2020: Fighting antibiotic resistance for the good of both humans and animals. Bonn: BMG. Accessed: 17 May 2022]. Available from: https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/5_Publikationen/Gesundheit/Berichte/BMG_DART_2020_Bericht_en.pdf
-
Robert Koch Institute (RKI). ARS - Antibiotika-Resistenz-Surveillance. Berlin: RKI. [Accessed: 25 Jun 2022]. Available from: https://ars.rki.de
-
Noll I, Schweickert B, Abu Sin M, Feig M, Claus H, Eckmanns T. [Antimicrobial resistance in Germany. Four years of antimicrobial resistance surveillance (ARS)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012;55(11-12):1370-6. German. https://doi.org/10.1007/s00103-012-1559-3 PMID: 23114435
-
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(71):n71. https://doi.org/10.1136/bmj.n71 PMID: 33782057
-
Markwart R, Roedenbeck M. The epidemiology and burden of antibiotic resistances in clinical infections in Germany: a systematic review and meta-analysis. PROSPERO 2022 CRD42022306576. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022306576
-
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27. https://doi.org/10.1016/S1473-3099(17)30753-3 PMID: 29276051
-
Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67(11):974-8. https://doi.org/10.1136/jech-2013-203104 PMID: 23963506
-
Greenland S, Robins JM. Estimation of a common effect parameter from sparse follow-up data. Biometrics. 1985;41(1):55-68. https://doi.org/10.2307/2530643 PMID: 4005387
-
Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934-9. https://doi.org/10.1016/j.jclinepi.2011.11.014 PMID: 22742910
-
Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute. [Accessed: 18 Jan 2022]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
-
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. [Accessed: 18 Mar 2022]. Available from: https://www.r-project.org
-
Schwarzer G, Carpenter JR, Rücker G. Meta-analysis with R. Springer International Publishing Switzerland; 2015. ISBN: 978-3-319-21416-0.
-
Schwarzer G. Meta: An R package for meta-analysis. R News. 2007;7:40-5. Available from: https://cran.r-project.org/doc/Rnews/Rnews_2007-3.pdf
-
Abdrabou AMM, Ul Habib Bajwa Z, Halfmann A, Mellmann A, Nimmesgern A, Margardt L, et al. Molecular epidemiology and antimicrobial resistance of Clostridioides difficile in Germany, 2014-2019. Int J Med Microbiol. 2021;311(4):151507. https://doi.org/10.1016/j.ijmm.2021.151507 PMID: 33915347
-
Banhart S, Selb R, Oehlmann S, Bender J, Buder S, Jansen K, et al. The Mosaic mtr locus as major genetic determinant of azithromycin resistance of Neisseria gonorrhoeae-Germany, 2018. J Infect Dis. 2021;224(8):1398-404. https://doi.org/10.1093/infdis/jiab091 PMID: 33592101
-
Abo Basha J, Kiel M, Görlich D, Schütte-Nütgen K, Witten A, Pavenstädt H, et al. Phenotypic and genotypic characterization of Escherichia coli causing urinary tract infections in kidney-transplanted patients. J Clin Med. 2019;8(7):8. https://doi.org/10.3390/jcm8070988 PMID: 31284699
-
Doenhardt M, Seipolt B, Mense L, Winkler JL, Thürmer A, Rüdiger M, et al. Neonatal and young infant sepsis by Group B Streptococci and Escherichia coli: a single-center retrospective analysis in Germany-GBS screening implementation gaps and reduction in antibiotic resistance. Eur J Pediatr. 2020;179(11):1769-77. https://doi.org/10.1007/s00431-020-03659-8 PMID: 32447562
-
Dörr S, Holland-Letz AK, Weisser G, Chatzitomaris A, Lobmann R. Bacterial diversity, antibiotic resistance, and the risk of lower limb amputation in younger and older individuals with diabetic foot infection. Int J Low Extrem Wounds. 2023;22(1):63-71. https://doi.org/10.1177/1534734621992290 PMID: 33745353
-
Dubler S, Lenz M, Zimmermann S, Richter DC, Weiss KH, Mehrabi A, et al. Does vancomycin resistance increase mortality in Enterococcus faecium bacteraemia after orthotopic liver transplantation? A retrospective study. Antimicrob Resist Infect Control. 2020;9(1):22. https://doi.org/10.1186/s13756-020-0683-3 PMID: 32005223
-
Frickmann H, Hahn A, Berlec S, Ulrich J, Jansson M, Schwarz NG, et al. On the etiological relevance of Escherichia coli and Staphylococcus aureus in superficial and deep infections - a hypothesis-forming, retrospective assessment. Eur J Microbiol Immunol (Bp). 2019;9(4):124-30. https://doi.org/10.1556/1886.2019.00021 PMID: 31934364
-
Friesen J, Neuber R, Fuhrmann J, Kietzmann H, Wenzel T, Schaumburg F, et al. Panton-Valentine leukocidin-positive Staphylococcus aureus in skin and soft tissue infections from primary care patients. Clin Microbiol Infect. 2020;26(10):1416.e1-4. https://doi.org/10.1016/j.cmi.2020.06.029 PMID: 32619735
-
Große K, Ohm D, Würstle S, Brozat JF, Schmid RM, Trautwein C, et al. Clinical characteristics and outcome of patients with enterococcal liver abscess. Sci Rep. 2021;11(1):22265. https://doi.org/10.1038/s41598-021-01620-9 PMID: 34782684
-
Grotelueschen R, Luetgehetmann M, Erbes J, Heidelmann LM, Grupp K, Karstens K, et al. Microbial findings, sensitivity and outcome in patients with postoperative peritonitis a retrospective cohort study. Int J Surg. 2019;70:63-9. https://doi.org/10.1016/j.ijsu.2019.08.020 PMID: 31437641
-
Gudiol C, Albasanz-Puig A, Laporte-Amargós J, Pallarès N, Mussetti A, Ruiz-Camps I, et al. Clinical predictive model of multidrug resistance in neutropenic cancer patients with bloodstream infection due to Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2020;64(4):64. https://doi.org/10.1128/AAC.02494-19 PMID: 32015035
-
Hischebeth GT, Randau TM, Ploeger MM, Friedrich MJ, Kaup E, Jacobs C, et al. Staphylococcus aureus versus Staphylococcus epidermidis in periprosthetic joint infection-Outcome analysis of methicillin-resistant versus methicillin-susceptible strains. Diagn Microbiol Infect Dis. 2019;93(2):125-30. https://doi.org/10.1016/j.diagmicrobio.2018.08.012 PMID: 30266398
-
Hitzenbichler F, Simon M, Holzmann T, Iberer M, Zimmermann M, Salzberger B, et al. Antibiotic resistance in E. coli isolates from patients with urinary tract infections presenting to the emergency department. Infection. 2018;46(3):325-31. https://doi.org/10.1007/s15010-018-1117-5 PMID: 29368165
-
Hoppe PA, Hanitsch LG, Leistner R, Niebank M, Bührer C, von Bernuth H, et al. Periorbital infections and conjunctivitis due to Panton-valentine leukocidin (PVL) positive Staphylococcus aureus in children. BMC Infect Dis. 2018;18(1):371. https://doi.org/10.1186/s12879-018-3281-8 PMID: 30081842
-
Hos NJ, Jazmati N, Stefanik D, Hellmich M, AlSael H, Kern WV, et al. Determining vancomycin Etest MICs in patients with MRSA bloodstream infection does not support switching antimicrobials. J Infect. 2017;74(3):248-59. https://doi.org/10.1016/j.jinf.2016.12.007 PMID: 28017826
-
Jarlier V, Diaz Högberg L, Heuer OE, Campos J, Eckmanns T, Giske CG, et al. Strong correlation between the rates of intrinsically antibiotic-resistant species and the rates of acquired resistance in Gram-negative species causing bacteraemia, EU/EEA, 2016. Euro Surveill. 2019;24(33):1800538. https://doi.org/10.2807/1560-7917.ES.2019.24.33.1800538 PMID: 31431208
-
Klasan A, Schermuksnies A, Gerber F, Bowman M, Fuchs-Winkelmann S, Heyse TJ. Development of antibiotic resistance in periprosthetic joint infection after total knee arthroplasty. Bone Joint J. 2021;103-B(6) Supple A;171-6. https://doi.org/10.1302/0301-620X.103B6.BJJ-2020-1923.R1 PMID: 34053285
-
Klein S, Menz MD, Zanger P, Heeg K, Nurjadi D. Increase in the prevalence of panton-valentine leukocidin and clonal shift in community-onset methicillin-resistant Staphylococcus aureus causing skin and soft-tissue infections in the Rhine-Neckar Region, Germany, 2012-2016. Int J Antimicrob Agents. 2019;53(3):261-7. https://doi.org/10.1016/j.ijantimicag.2018.10.026 PMID: 30412736
-
Klingeberg A, Noll I, Willrich N, Feig M, Emrich D, Zill E, et al. Antibiotic-resistant E. coli in uncomplicated community-acquired urinary tract infection. Dtsch Arztebl Int. 2018;115(29-30):494-500. https://doi.org/10.3238/arztebl.2018.0494 PMID: 30135009
-
Koppe U, von Laer A, Kroll LE, Noll I, Feig M, Schneider M, et al. Carbapenem non-susceptibility of Klebsiella pneumoniae isolates in hospitals from 2011 to 2016, data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob Resist Infect Control. 2018;7(1):71. https://doi.org/10.1186/s13756-018-0362-9 PMID: 29992016
-
Köstlin-Gille N, Härtel C, Haug C, Göpel W, Zemlin M, Müller A, et al. Epidemiology of early and late onset neonatal sepsis in very low birthweight infants. Pediatr Infect Dis J. 2021;40(3):255-9. https://doi.org/10.1097/INF.0000000000002976 PMID: 33538544
-
Kramer TS, Remschmidt C, Werner S, Behnke M, Schwab F, Werner G, et al. The importance of adjusting for enterococcus species when assessing the burden of vancomycin resistance: a cohort study including over 1000 cases of enterococcal bloodstream infections. Antimicrob Resist Infect Control. 2018;7(1):133. https://doi.org/10.1186/s13756-018-0419-9 PMID: 30459945
-
Kramer TS, Schröder C, Behnke M, Aghdassi SJ, Geffers C, Gastmeier P, et al. Decrease of methicillin resistance in Staphylococcus aureus in nosocomial infections in Germany-a prospective analysis over 10 years. J Infect. 2019;78(3):215-9. https://doi.org/10.1016/j.jinf.2018.12.005 PMID: 30658080
-
Kramer TS, Schwab F, Behnke M, Hansen S, Gastmeier P, Aghdassi SJS. Linezolid use in German acute care hospitals: results from two consecutive national point prevalence surveys. Antimicrob Resist Infect Control. 2019;8(1):159. https://doi.org/10.1186/s13756-019-0617-0 PMID: 31649816
-
Kresken M, Körber-Irrgang B, Korte-Berwanger M, Pfennigwerth N, Gatermann SG, Seifert H, et al. Dissemination of carbapenem-resistant Pseudomonas aeruginosa isolates and their susceptibilities to ceftolozane-tazobactam in Germany. Int J Antimicrob Agents. 2020;55(6):105959. https://doi.org/10.1016/j.ijantimicag.2020.105959 PMID: 32325200
-
Lackermair S, Egermann H, Müller A. Distribution of underlying causative organisms, patient age, and survival in spontaneous spondylodiscitis with special focus on elderly patients. J Neurol Surg A Cent Eur Neurosurg. 2023;84(1):8-13. https://doi.org/10.1055/s-0040-1721005 PMID: 33583009
-
Lâm TT, Nürnberg S, Claus H, Vogel U. Molecular epidemiology of imipenem resistance in invasive Haemophilus influenzae infections in Germany in 2016. J Antimicrob Chemother. 2020;75(8):2076-86. PMID: 32449913
-
Leistner R, Gürntke S, Sakellariou C, Denkel LA, Bloch A, Gastmeier P, et al. Bloodstream infection due to extended-spectrum beta-lactamase (ESBL)-positive K. pneumoniae and E. coli: an analysis of the disease burden in a large cohort. Infection. 2014;42(6):991-7. https://doi.org/10.1007/s15010-014-0670-9 PMID: 25100555
-
Markwart R, Willrich N, Haller S, Noll I, Koppe U, Werner G, et al. The rise in vancomycin-resistant Enterococcus faecium in Germany: data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob Resist Infect Control. 2019;8(1):147. https://doi.org/10.1186/s13756-019-0594-3 PMID: 31485325
-
Meinen A, Reuss A, Willrich N, Feig M, Noll I, Eckmanns T, et al. Antimicrobial resistance and the spectrum of pathogens in dental and oral-maxillofacial infections in hospitals and dental practices in Germany. Front Microbiol. 2021;12:676108. https://doi.org/10.3389/fmicb.2021.676108 PMID: 34149666
-
Meyer E, Schwab F, Gastmeier P. Nosocomial methicillin resistant Staphylococcus aureus pneumonia - epidemiology and trends based on data of a network of 586 German ICUs (2005-2009). Eur J Med Res. 2010;15(12):514-24. https://doi.org/10.1186/2047-783X-15-12-514 PMID: 21163726
-
Michelson K, Löffler B, Höring S. Time to positivity as a prognostic factor in bloodstream infections with Enterococcus spp. Diagn Microbiol Infect Dis. 2021;101(3):115396. https://doi.org/10.1016/j.diagmicrobio.2021.115396 PMID: 34325178
-
Mutters NT, Brooke RJ, Frank U, Heeg K. Low risk of apparent transmission of vancomycin-resistant Enterococci from bacteraemic patients to hospitalized contacts. Am J Infect Control. 2013;41(9):778-81. https://doi.org/10.1016/j.ajic.2012.11.019 PMID: 23453393
-
Neubeiser A, Bonsignore M, Tafelski S, Alefelder C, Schwegmann K, Rüden H, et al. Mortality attributable to hospital acquired infections with multidrug-resistant bacteria in a large group of German hospitals. J Infect Public Health. 2020;13(2):204-10. https://doi.org/10.1016/j.jiph.2019.07.025 PMID: 31420314
-
Nurjadi D, Klein S, Hannesen J, Heeg K, Boutin S, Zanger P. Molecular analysis of an increase in trimethoprim/sulfamethoxazole-resistant MRSA reveals multiple introductions into a tertiary care hospital, Germany 2012-19. J Antimicrob Chemother. 2021;77(1):38-48. https://doi.org/10.1093/jac/dkab341 PMID: 34529777
-
Nürnberg S, Claus H, Krone M, Vogel U, Lâm TT. Cefotaxime resistance in invasive Haemophilus influenzae isolates in Germany 2016-19: prevalence, epidemiology and relevance of PBP3 substitutions. J Antimicrob Chemother. 2021;76(4):920-9. https://doi.org/10.1093/jac/dkaa557 PMID: 33501993
-
Olearo F, Both A, Belmar Campos C, Hilgarth H, Klupp EM, Hansen JL, et al. Emergence of linezolid-resistance in vancomycin-resistant Enterococcus faecium ST117 associated with increased linezolid-consumption. Int J Med Microbiol. 2021;311(2):151477. https://doi.org/10.1016/j.ijmm.2021.151477 PMID: 33524636
-
Perniciaro S, Imöhl M, van der Linden M. Invasive pneumococcal disease in refugee children, Germany. Emerg Infect Dis. 2018;24(10):1934-6. https://doi.org/10.3201/eid2410.180253 PMID: 30226179
-
Pietsch M, Simon S, Meinen A, Trost E, Banerji S, Pfeifer Y, et al. Third generation cephalosporin resistance in clinical non-typhoidal Salmonella enterica in Germany and emergence of blaCTX-M-harbouring pESI plasmids. Microb Genom. 2021;7(10):7. https://doi.org/10.1099/mgen.0.000698 PMID: 34693903
-
Remschmidt C, Schröder C, Behnke M, Gastmeier P, Geffers C, Kramer TS. Continuous increase of vancomycin resistance in enterococci causing nosocomial infections in Germany - 10 years of surveillance. Antimicrob Resist Infect Control. 2018;7(1):54. https://doi.org/10.1186/s13756-018-0353-x PMID: 29760912
-
Rhim HY, Won SY, Kashefiolasl S, Brawanski N, Hattingen E, Berkefeld J, et al. Multidrug-resistant organisms (MDROs) in patients with subarachnoid hemorrhage (SAH). Sci Rep. 2021;11(1):8309. https://doi.org/10.1038/s41598-021-87863-y PMID: 33859304
-
Rothe K, Wantia N, Spinner CD, Schneider J, Lahmer T, Waschulzik B, et al. Antimicrobial resistance of bacteraemia in the emergency department of a German university hospital (2013-2018): potential carbapenem-sparing empiric treatment options in light of the new EUCAST recommendations. BMC Infect Dis. 2019;19(1):1091. https://doi.org/10.1186/s12879-019-4721-9 PMID: 31888581
-
Rupp M, Baertl S, Walter N, Hitzenbichler F, Ehrenschwender M, Alt V. Is there a difference in microbiological epidemiology and effective empiric antimicrobial therapy comparing fracture-related infection and periprosthetic joint infection? A retrospective comparative study. Antibiotics (Basel). 2021;10(8):10. https://doi.org/10.3390/antibiotics10080921 PMID: 34438971
-
Said D, Willrich N, Ayobami O, Noll I, Eckmanns T, Markwart R. The epidemiology of carbapenem resistance in Acinetobacter baumannii complex in Germany (2014-2018): an analysis of data from the national Antimicrobial Resistance Surveillance system. Antimicrob Resist Infect Control. 2021;10(1):45. https://doi.org/10.1186/s13756-021-00909-8 PMID: 33648594
-
Sakellariou C, Gürntke S, Steinmetz I, Kohler C, Pfeifer Y, Gastmeier P, et al. Sepsis caused by extended-spectrum beta-lactamase (ESBL)-positive K. pneumoniae and E. coli: comparison of severity of sepsis, delay of anti-infective therapy and ESBL genotype. PLoS One. 2016;11(7):e0158039. https://doi.org/10.1371/journal.pone.0158039 PMID: 27442425
-
Scheich S, Weber S, Reinheimer C, Wichelhaus TA, Hogardt M, Kempf VAJ, et al. Bloodstream infections with gram-negative organisms and the impact of multidrug resistance in patients with hematological malignancies. Ann Hematol. 2018;97(11):2225-34. https://doi.org/10.1007/s00277-018-3423-5 PMID: 29974230
-
Schneider SM, Schaeg M, Gärtner BC, Berger FK, Becker SL. Do written diagnosis-treatment recommendations on microbiological test reports improve the management of Staphylococcus aureus bacteremia? A single-center, retrospective, observational study. Diagn Microbiol Infect Dis. 2020;98(4):115170. https://doi.org/10.1016/j.diagmicrobio.2020.115170 PMID: 32911296
-
Schöneweck F, Schmitz RPH, Rißner F, Scherag A, Löffler B, Pletz MW, et al. The epidemiology of bloodstream infections and antimicrobial susceptibility patterns in Thuringia, Germany: a five-year prospective, state-wide surveillance study (AlertsNet). Antimicrob Resist Infect Control. 2021;10(1):132. https://doi.org/10.1186/s13756-021-00997-6 PMID: 34493334
-
Seitz M, Stief C, Waidelich R. Local epidemiology and resistance profiles in acute uncomplicated cystitis (AUC) in women: a prospective cohort study in an urban urological ambulatory setting. BMC Infect Dis. 2017;17(1):685. https://doi.org/10.1186/s12879-017-2789-7 PMID: 29037164
-
Selb R, Buder S, Dudareva S, Tamminga T, Bremer V, Banhart S, et al. Markedly decreasing azithromycin susceptibility of Neisseria gonorrhoeae, Germany, 2014 to 2021. Euro Surveill. 2021;26(31):26. https://doi.org/10.2807/1560-7917.ES.2021.26.31.2100616 PMID: 34355690
-
Suwono B, Eckmanns T, Kaspar H, Merle R, Zacher B, Kollas C, et al. Cluster analysis of resistance combinations in Escherichia coli from different human and animal populations in Germany 2014-2017. PLoS One. 2021;16(1):e0244413. https://doi.org/10.1371/journal.pone.0244413 PMID: 33471826
-
Tessema B, Lippmann N, Knüpfer M, Sack U, König B. Antibiotic resistance patterns of bacterial isolates from neonatal sepsis patients at university hospital of Leipzig, Germany. Antibiotics (Basel). 2021;10(3):10. https://doi.org/10.3390/antibiotics10030323 PMID: 33808878
-
Theodorou P, Lefering R, Perbix W, Spanholtz TA, Maegele M, Spilker G, et al. Staphylococcus aureus bacteremia after thermal injury: the clinical impact of methicillin resistance. Burns. 2013;39(3):404-12. https://doi.org/10.1016/j.burns.2012.12.006 PMID: 23313016
-
Theodorou P, Thamm OC, Perbix W, Phan VT. Pseudomonas aeruginosa bacteremia after burn injury: the impact of multiple-drug resistance. J Burn Care Res. 2013;34(6):649-58. https://doi.org/10.1097/BCR.0b013e318280e2c7 PMID: 23817000
-
Walker SV, Wolke M, Plum G, Weber RE, Werner G, Hamprecht A. Failure of Vitek2 to reliably detect vanB-mediated vancomycin resistance in Enterococcus faecium. J Antimicrob Chemother. 2021;76(7):1698-702. https://doi.org/10.1093/jac/dkab101 PMID: 33855441
-
Walter J, Haller S, Blank HP, Eckmanns T, Abu Sin M, Hermes J. Incidence of invasive meticillin-resistant Staphylococcus aureus infections in Germany, 2010 to 2014. Euro Surveill. 2015;20(46):30067. https://doi.org/10.2807/1560-7917.ES.2015.20.46.30067 PMID: 26607355
-
Weber S, Hogardt M, Reinheimer C, Wichelhaus TA, Kempf VAJ, Kessel J, et al. Bloodstream infections with vancomycin-resistant enterococci are associated with a decreased survival in patients with hematological diseases. Ann Hematol. 2019;98(3):763-73. https://doi.org/10.1007/s00277-019-03607-z PMID: 30666433
-
Wilke MH, Becker K, Kloss S, Heimann SM, Goldmann A, Weber B, et al. Treatment of MRSA pneumonia: Clinical and economic comparison of linezolid vs. vancomycin - a retrospective analysis of medical charts and re-imbursement data of real-life patient populations. GMS Infect Dis. 2017;5:Doc02. PMID: 30671324
-
Willmann M, Kuebart I, Marschal M, Schröppel K, Vogel W, Flesch I, et al. Effect of metallo-β-lactamase production and multidrug resistance on clinical outcomes in patients with Pseudomonas aeruginosa bloodstream infection: a retrospective cohort study. BMC Infect Dis. 2013;13(1):515. https://doi.org/10.1186/1471-2334-13-515 PMID: 24176052
-
Yayan J, Ghebremedhin B, Rasche K. No outbreak of vancomycin and linezolid resistance in staphylococcal pneumonia over a 10-year period. PLoS One. 2015;10(9):e0138895. https://doi.org/10.1371/journal.pone.0138895 PMID: 26398276
-
Navidinia M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. Archives of Advances in Biosciences.2016;7(3):43-57. https://doi.org/10.22037/jps.v7i3.12584
-
Puchter L, Chaberny IF, Schwab F, Vonberg RP, Bange FC, Ebadi E. Economic burden of nosocomial infections caused by vancomycin-resistant enterococci. Antimicrob Resist Infect Control. 2018;7(1):1. https://doi.org/10.1186/s13756-017-0291-z PMID: 29312658
-
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Hygienemaßnahmen zur Prävention der Infektion durch Enterokokken mit speziellen Antibiotikaresistenzen. [Hygiene measures for the prevention of enterococcal infections with specific antibiotic resistances]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(10):1310-61. German. https://doi.org/10.1007/s00103-018-2811-2
-
Markwart R, Willrich N, Eckmanns T, Werner G, Ayobami O. Low proportion of linezolid and daptomycin resistance among bloodborne vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus infections in Europe. Front Microbiol. 2021;12:664199. https://doi.org/10.3389/fmicb.2021.664199 PMID: 34135877
-
European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report for 2020. Stockholm: ECDC; 2022. Available from: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-eueea-ears-net-annual-epidemiological-report-2020
-
Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4(1):18033. https://doi.org/10.1038/nrdp.2018.33 PMID: 29849094
-
Tübbicke A, Hübner C, Kramer A, Hübner NO, Fleßa S. Transmission rates, screening methods and costs of MRSA--a systematic literature review related to the prevalence in Germany. Eur J Clin Microbiol Infect Dis. 2012;31(10):2497-511. https://doi.org/10.1007/s10096-012-1632-8 PMID: 22573360
-
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Empfehlungen zur Prävention und Kontrolle von Methicillin resistenten Staphylococcus aureus-Stämmen (MRSA) in medizinischen und pflegerischen Einrichtungen. [Recommendations for the prevention and control of meticillin-resistant Staphylococcus aureus strains (MRSA) in medical and nursing facilities]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(10):1310-61. German. https://doi.org/10.1007/s00103-018-2811-2
-
Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67(3):351-68. https://doi.org/10.2165/00003495-200767030-00003 PMID: 17335295
-
Archibald L, Phillips L, Monnet D, McGowan JE Jr, Tenover F, Gaynes R. Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis. 1997;24(2):211-5. https://doi.org/10.1093/clinids/24.2.211 PMID: 9114149
-
Holstiege J, Schulz M, Akmatov MK, Kern WV, Steffen A, Bätzing J. The decline in outpatient antibiotic use. Dtsch Arztebl Int. 2020;117(41):679-86. PMID: 33357337
-
Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55. https://doi.org/10.1016/S0140-6736(21)02724-0 PMID: 35065702
-
Brinkwirth S, Ayobami O, Eckmanns T, Markwart R. Hospital-acquired infections caused by enterococci: a systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020. Euro Surveill. 2021;26(45):2001628. https://doi.org/10.2807/1560-7917.ES.2021.26.45.2001628 PMID: 34763754
-
Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Health. 2018;2(9):e398-405. https://doi.org/10.1016/S2542-5196(18)30186-4 PMID: 30177008
-
European Committee on Antimicrobial Susceptibility Testing (EUCAST). New definitions of S, I and R from 2019. Växjö: EUCAST. [Accessed: 19 May 2022]. Available from: https://www.eucast.org/newsiandr
-
Klingeberg A, Noll I, Willrich N, Feig M, Emrich D, Zill E, et al. Antibiotikaresistenz von E. coli bei ambulant erworbener unkomplizierter Harnwegsinfektion. Eine prospektive Kohortenstudie der Jahre 2015/2016 (SARHA-Studie) im Vergleich mit Daten der Antibiotika-Resistenz-Surveillance (ARS). [Antibiotic resistance of E. coli in community-acquired uncomplicated urinary tract infections. A prospective cohort study from 2015/2016 (SARHA study) compared with data from Antibiotic-Resistance-Surveillance (ARS)]. Dtsch Arztebl. 2018;115:494-500. German.
-
Robert Koch-Institute (RKI). Antibiotika Resistenz Surveillance Datenbank. [Antibiotic-Resistance-Surveillance database]. Berlin: RKI; [Accessed: 7 Apr 2022]. Available from: https://ars.rki.de/Content/Database/Main.aspx
-
Jafari M, Ansari-Pour N. Why, when and how to adjust your p values? Cell J. 2019;20(4):604-7. PMID: 30124010
-
Centers for Disease Control and Prevention (CDC). Antibiotic Resistance & Patient Safety Portal. Atlanta: CDC. [Accessed: 9 May 2023]. Available from: https://arpsp.cdc.gov/profile/antibiotic-resistance?tab=antibiotic-resistance
-
Kajihara T, Yahara K, Hirabayashi A, Shibayama K, Sugai M. Japan Nosocomial Infections Surveillance (JANIS): current status, international collaboration, and future directions for a comprehensive antimicrobial resistance surveillance system. Jpn J Infect Dis. 2021;74(2):87-96. https://doi.org/10.7883/yoken.JJID.2020.499 PMID: 32863357
-
Hu F, Wang M, Zhu D, Wang F. CHINET efforts to control antimicrobial resistance in China. J Glob Antimicrob Resist. 2020;21:76-7. https://doi.org/10.1016/j.jgar.2020.03.007 PMID: 32205265
Data & Media loading...
Supplementary data
-
-
Supplement
-