1887
Research Open Access
Like 0

Abstract

Introduction

Empirical therapy for the treatment of urinary tract infections should be tailored to the current distribution and susceptibility of potential pathogens to ensure optimal treatment.

Aim

We aimed to provide an up-to-date overview of the epidemiology and susceptibility of Enterobacterales isolated from urine in Germany.

Methods

We retrospectively analysed antimicrobial susceptibility data from 201,152 urine specimens collected between January 2016 and June 2021 from in- and outpatients. Multiple logistic regression analysis was used to evaluate the association between year of investigation and antibiotic resistance, adjusted for age, sex and species subgroup. Subgroup analyses were performed for midstream urine samples obtained from (i) female outpatients aged 15 to 50 years, (ii) female outpatients older than 50 years and (iii) male outpatients.

Results

Resistance rates of less than 20% were observed for nitroxoline (3.9%), fosfomycin (4.6%), nitrofurantoin (11.7%), cefuroxime (13.5%) and ciprofloxacin (14.2%). Resistance to trimethoprim/sulfamethoxazole (SXT) (20.1%), amoxicillin-clavulanic acid (20.5%), trimethoprim (24.2%), pivmecillinam (29.9%) and ampicillin (53.7%) was considerably higher. In the subgroup of outpatient women aged 15–50 years, resistance rates were generally lower. Resistance rates of all antibiotics decreased from 2016 to 2021. Multiple logistic regression revealed the lowest adjusted odds ratio (ORadj) of 0.838 (95% confidence interval (CI): 0.819–0.858; p < 0.001) for pivmecillinam and the highest ORadj of 0.989 (95% CI: 0.972–1.007; p = 0.226) for nitrofurantoin.

Conclusions

Resistance has generally decreased over the past years, independent of sex, age and causative pathogen. Our data provide an important basis for empirical antibiotic recommendations in various settings and patient collectives.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.19.2200568
2023-05-11
2024-11-15
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.19.2200568
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/19/eurosurv-28-19-5.html?itemId=/content/10.2807/1560-7917.ES.2023.28.19.2200568&mimeType=html&fmt=ahah

References

  1. Dicheva G, Schicktanz C, Dicheva S. Harnwegsinfekte bei Frauen. [Urinary tract infections in women]. In: Glaeske G, Schicktanz C, editors: Barmer GEK Arzneimittelreport 2015: Schriftenreihe zur Gesundheitsanalyse Band 32. Neue Ausg. Siegburg: Asgard Verlagsservice; 2015; pp. 107-37. German.
  2. Tandogdu Z, Wagenlehner FME. Global epidemiology of urinary tract infections. Curr Opin Infect Dis. 2016;29(1):73-9.  https://doi.org/10.1097/QCO.0000000000000228  PMID: 26694621 
  3. Wagenlehner FME, Bjerklund Johansen TE, Cai T, Koves B, Kranz J, Pilatz A, et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol. 2020;17(10):586-600.  https://doi.org/10.1038/s41585-020-0362-4  PMID: 32843751 
  4. Zhu C, Wang DQ, Zi H, Huang Q, Gu JM, Li LY, et al. Epidemiological trends of urinary tract infections, urolithiasis and benign prostatic hyperplasia in 203 countries and territories from 1990 to 2019. Mil Med Res. 2021;8(1):64.  https://doi.org/10.1186/s40779-021-00359-8  PMID: 34879880 
  5. Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019;11:1756287219832172.  https://doi.org/10.1177/1756287219832172  PMID: 31105774 
  6. Akhavizadegan H, Hosamirudsari H, Pirroti H, Akbarpour S. Antibiotic resistance: a comparison between inpatient and outpatient uropathogens. East Mediterr Health J. 2021;27(2):124-30.  https://doi.org/10.26719/emhj.20.085  PMID: 33665796 
  7. Geerlings SE. Clinical presentations and epidemiology of urinary tract infections. Microbiol Spectr. 2016;4(5).  https://doi.org/10.1128/microbiolspec.UTI-0002-2012  PMID: 27780014 
  8. Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E. The diagnosis of urinary tract infection: a systematic review. Dtsch Arztebl Int. 2010;107(21):361-7. PMID: 20539810 
  9. Chu CM, Lowder JL. Diagnosis and treatment of urinary tract infections across age groups. Am J Obstet Gynecol. 2018;219(1):40-51.  https://doi.org/10.1016/j.ajog.2017.12.231  PMID: 29305250 
  10. Kranz J, Schmidt S, Lebert C, Schneidewind L, Vahlensieck W, Sester U, et al. [Epidemiology, diagnostics, therapy, prevention and management of uncomplicated bacterial outpatient acquired urinary tract infections in adult patients : Update 2017 of the interdisciplinary AWMF S3 guideline]. Urologe A. 2017;56(6):746-58. German.  https://doi.org/10.1007/s00120-017-0389-1  PMID: 28455578 
  11. van der Starre WE, van Nieuwkoop C, Paltansing S, van’t Wout JW, Groeneveld GH, Becker MJ, et al. Risk factors for fluoroquinolone-resistant Escherichia coli in adults with community-onset febrile urinary tract infection. J Antimicrob Chemother. 2011;66(3):650-6.  https://doi.org/10.1093/jac/dkq465  PMID: 21123286 
  12. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645-58.  https://doi.org/10.2147/IDR.S173867  PMID: 30349322 
  13. Podbielski S. MiQ: Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik. Harnwegsinfektionen. [MiQ: Quality standards in microbiological- infectiological diagnostics. Urinary tract infections]. DGHM, editor 2020. German. ISBN: 9783437226854.
  14. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0. Växjö: EUCAST; 2020. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf
  15. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Expected Resistant Phenotypes. Version 1.1. Växjö: EUCAST; 2022. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2022/Expected_Susceptible_Phenotypes_Tables_v1.1_20220325.pdf
  16. Donker GA. NIVEL primary care database – sentinel practices 2015. Utrecht: Nederlands Instituut voor Onderzoek van de Gezondheidszorg (NIVEL); 2016. Available from: https://www.nivel.nl/sites/default/files/bestanden/Peilstations_2015_Engel.pdf
  17. den Heijer CD, van Dongen MC, Donker GA, Stobberingh EE. Diagnostic approach to urinary tract infections in male general practice patients: a national surveillance study. Br J Gen Pract. 2012;62(604):e780-6.  https://doi.org/10.3399/bjgp12X658313  PMID: 23211182 
  18. Nicolle LE. Uncomplicated urinary tract infection in adults including uncomplicated pyelonephritis. Urol Clin North Am. 2008;35(1):1-12, v.  https://doi.org/10.1016/j.ucl.2007.09.004  PMID: 18061019 
  19. Naber KG, Schito G, Botto H, Palou J, Mazzei T. Surveillance study in Europe and Brazil on clinical aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): implications for empiric therapy. Eur Urol. 2008;54(5):1164-75.  https://doi.org/10.1016/j.eururo.2008.05.010  PMID: 18511178 
  20. Kahlmeter G. Prevalence and antimicrobial susceptibility of pathogens in uncomplicated cystitis in Europe. The ECO.SENS study. Int J Antimicrob Agents. 2003;22(Suppl 2):49-52.  https://doi.org/10.1016/S0924-8579(03)00229-2  PMID: 14527771 
  21. Magliano E, Grazioli V, Deflorio L, Leuci AI, Mattina R, Romano P, et al. Gender and age-dependent etiology of community-acquired urinary tract infections. ScientificWorldJournal. 2012;2012:349597.  https://doi.org/10.1100/2012/349597  PMID: 22629135 
  22. Ena J, Arjona F, Martínez-Peinado C, López-Perezagua MM, Amador C. Epidemiology of urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Urology. 2006;68(6):1169-74.  https://doi.org/10.1016/j.urology.2006.08.1075  PMID: 17169640 
  23. European Centre for Disease Prevention and Control (ECDC). Surveillance atlas of infectious diseases. Stockholm: ECDC; [Accessed: 16 Oct 2022]. Available from: https://atlas.ecdc.europa.eu/public/index.aspx
  24. Robert Koch Institute (RKI). Antibiotikaverbrauchs-Surveillance. Surveillance of antibiotic consumption. Berlin: RKI. [Accessed: 18 Oct 2022]. German. Available from: https://avs.rki.de
  25. Salm J, Salm F, Arendarski P, Kramer TS. High antimicrobial resistance in urinary tract infections in male outpatients in routine laboratory data, Germany, 2015 to 2020. Euro Surveill. 2022;27(30):2101012.  https://doi.org/10.2807/1560-7917.ES.2022.27.30.2101012  PMID: 35904060 
  26. Dunne MW, Aronin SI, Yu KC, Watts JA, Gupta V. A multicenter analysis of trends in resistance in urinary Enterobacterales isolates from ambulatory patients in the United States: 2011-2020. BMC Infect Dis. 2022;22(1):194.  https://doi.org/10.1186/s12879-022-07167-y  PMID: 35227203 
  27. Robert Koch Institute (RKI). ARS - Antibiotika-Resistenz-Surveillance. [ARS – surveillance of antibiotic resistance]. Berlin: RKI. [Accessed: 1 Jun 2022]. German. Available from: https://ars.rki.de
  28. Farfour E, Degand N, Riverain E, Fihman V, Le Brun C, Péan de Ponfilly G, et al. Fosfomycin, from susceptibility to resistance: Impact of the new guidelines on breakpoints. Med Mal Infect. 2020;50(7):611-6.  https://doi.org/10.1016/j.medmal.2020.07.003  PMID: 32679342 
  29. Farfour E, Dortet L, Guillard T, Chatelain N, Poisson A, Mizrahi A, et al. Antimicrobial Resistance in Enterobacterales Recovered from Urinary Tract Infections in France. Pathogens. 2022;11(3):356.  https://doi.org/10.3390/pathogens11030356  PMID: 35335681 
  30. Plambeck L, Fuchs F, Sattler J, Hamprecht A. In vitro activity of mecillinam, temocillin and nitroxoline against MDR Enterobacterales. JAC Antimicrob Resist. 2022;4(3):dlac059.  https://doi.org/10.1093/jacamr/dlac059  PMID: 35719201 
  31. Wissenschaftlichea Institut der AOK (WIdO). PharMaAnalyst. Berlin: WIdO; [Accessed: 16 Oct 2022]. German. Available from: https://arzneimittel.wido.de/PharMaAnalyst/;jsessionid=AC0676B87A38B7F51183D72F9F914643?0
  32. Kern WV. Antibiotika und Antiinfektiva. [antibiotics and anti-infectives]. In: Schwabe U, Ludwig W-D, editors. Arzneiverordnungs-Report 2020. [Drug prescription report 2020]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2020. p. 307-30. German.
  33. European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption dashboard (ESAC-Net). Stockholm: ECDC. [Accessed: 10 Jun 2022]. Available from: https://www.ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and-disease-data/database
  34. Holstiege J, Schulz M, Akmatov MK, Steffen A, Bätzing J. Update: Die ambulante Anwendung systemischer Antibiotika in Deutschland im Zeitraum 2010 bis 2018 – Eine populationsbasierte Studie. [Update: outpatient use of systemic antibiotics in Germany in the period 2010 to 2018 - a population-based study]. versorgungsatlas.de. Bericht Nr 19/07. [Report no 19/07]. Berlin: Zentralinstitut für die kassenärztliche Versorgung in Deutschland. 2019. German. Available from: https://www.versorgungsatlas.de/fileadmin/ziva_docs/104/VA_19-07_Bericht_UpdateAntibiotika_2019-08-21V1.pdf
  35. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial wild type distributions of microorganisms Växjö: EUCAST. [Accessed: 16 Oct 2022. Available from: https://mic.eucast.org/search/?search%5Bmethod%5D=mic&search%5Bantibiotic%5D=60&search%5Bspecies%5D=-1&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50
/content/10.2807/1560-7917.ES.2023.28.19.2200568
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error