1887
Research Open Access
Like 0

Abstract

Introduction

is a member of the complex (MTBC) not routinely identified to species level. It lacks specific clinical features of presentation and may therefore not be identified as the causative agent of tuberculosis. Use of whole genome sequencing (WGS) in the investigation of a family microepidemic of tuberculosis in Almería, Spain, unexpectedly identified the involvement of .

Aim

We aimed to evaluate the presence of additional unidentified cases and to determine the magnitude of this occurrence.

Methods

First-line characterisation of the MTBC isolates was done by MIRU-VNTR, followed by WGS. Human and animal isolates were integrated in the analysis.

Results

A comprehensive One Health strategy allowed us to (i) detect other 11 infections in humans in a period of 18 years, (ii) systematically analyse infections on an epidemiologically related goat farm and (iii) geographically expand the study by including 16 isolates from other provinces. Integrative genomic analysis of 41 human and animal isolates showed a high diversity of strains. The animal isolates’ diversity was compatible with long-term infection, and close genomic relationships existed between isolates from goats on the farm and recent cases of infection in humans.

Discussion

Zoonotic circulation of strains had gone unnoticed for 18 years. Systematic characterisation of MTBC at species level and/or extended investigation of the possible sources of exposure in all tuberculosis cases would minimise the risk of overlooking similar zoonotic events.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.12.2200852
2023-03-23
2025-01-22
/content/10.2807/1560-7917.ES.2023.28.12.2200852
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/12/eurosurv-28-12-6.html?itemId=/content/10.2807/1560-7917.ES.2023.28.12.2200852&mimeType=html&fmt=ahah

References

  1. Aranaz A, Cousins D, Mateos A, Domínguez L. Elevation of Mycobacterium tuberculosis subsp. caprae Aranaz et al. 1999 to species rank as Mycobacterium caprae comb. nov., sp. nov. Int J Syst Evol Microbiol. 2003;53(Pt 6):1785-9.  https://doi.org/10.1099/ijs.0.02532-0  PMID: 14657105 
  2. Sevilla IA, Arnal MC, Fuertes M, Martín E, Comenge J, Elguezabal N, et al. Tuberculosis outbreak caused by Mycobacterium caprae in a rabbit farm in Spain. Transbound Emerg Dis. 2020;67(1):431-41.  https://doi.org/10.1111/tbed.13366  PMID: 31539200 
  3. Pérez de Val B, Perea C, Estruch J, Solano-Manrique C, Riera C, Sanz A, et al. Generalized tuberculosis due to Mycobacterium caprae in a red fox phylogenetically related to livestock breakdowns. BMC Vet Res. 2022;18(1):352.  https://doi.org/10.1186/s12917-022-03454-7  PMID: 36127697 
  4. Prodinger WM, Indra A, Koksalan OK, Kilicaslan Z, Richter E. Mycobacterium caprae infection in humans. Expert Rev Anti Infect Ther. 2014;12(12):1501-13.  https://doi.org/10.1586/14787210.2014.974560  PMID: 25345680 
  5. Kubica T, Rüsch-Gerdes S, Niemann S. Mycobacterium bovis subsp. caprae caused one-third of human M. bovis-associated tuberculosis cases reported in Germany between 1999 and 2001. J Clin Microbiol. 2003;41(7):3070-7.  https://doi.org/10.1128/JCM.41.7.3070-3077.2003  PMID: 12843046 
  6. Rodríguez E, Sánchez LP, Pérez S, Herrera L, Jiménez MS, Samper S, et al. Human tuberculosis due to Mycobacterium bovis and M. caprae in Spain, 2004-2007. Int J Tuberc Lung Dis. 2009;13(12):1536-41. PMID: 19919773 
  7. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol. 2006;44(12):4498-510.  https://doi.org/10.1128/JCM.01392-06  PMID: 17005759 
  8. Pérez-Lago L, Comas I, Navarro Y, González-Candelas F, Herranz M, Bouza E, et al. Whole genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J Infect Dis. 2014;209(1):98-108.  https://doi.org/10.1093/infdis/jit439  PMID: 23945373 
  9. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178-92.  https://doi.org/10.1093/bib/bbs017  PMID: 22517427 
  10. Valcheva V, Savova-Lalkovska T, Vyazovaya A, Dimitrova A, Bonovska M, Najdenski H. First insight into phylogeography of Mycobacterium bovis and M. caprae from cattle in Bulgaria. Infect Genet Evol. 2020;81:104240.  https://doi.org/10.1016/j.meegid.2020.104240  PMID: 32058076 
  11. Ghielmetti G, Scherrer S, Friedel U, Frei D, Suter D, Perler L, et al. Epidemiological tracing of bovine tuberculosis in Switzerland, multilocus variable number of tandem repeat analysis of Mycobacterium bovis and Mycobacterium caprae. PLoS One. 2017;12(2):e0172474.  https://doi.org/10.1371/journal.pone.0172474  PMID: 28222182 
  12. Magnani R, Cavalca M, Pierantoni M, Luppi A, Cantoni AM, Prosperi A, et al. Infection by Mycobacterium caprae in three cattle herds in Emilia-Romagna Region, Northern Italy. Ital J Food Saf. 2020;9(1):8467.  https://doi.org/10.4081/ijfs.2020.8467  PMID: 32300569 
  13. Rodríguez S, Bezos J, Romero B, de Juan L, Álvarez J, Castellanos E, et al. Mycobacterium caprae infection in livestock and wildlife, Spain. Emerg Infect Dis. 2011;17(3):532-5.  https://doi.org/10.3201/eid1703.100618  PMID: 21392452 
  14. Ciaravino G, Vidal E, Cortey M, Martín M, Sanz A, Mercader I, et al. Phylogenetic relationships investigation of Mycobacterium caprae strains from sympatric wild boar and goats based on whole genome sequencing. Transbound Emerg Dis. 2021;68(3):1476-86.  https://doi.org/10.1111/tbed.13816  PMID: 32888386 
  15. Navarro Y, Romero B, Bouza E, Domínguez L, de Juan L, García-de-Viedma D. Detailed chronological analysis of microevolution events in herds infected persistently by Mycobacterium bovis. Vet Microbiol. 2016;183:97-102.  https://doi.org/10.1016/j.vetmic.2015.11.032  PMID: 26790941 
  16. Reis AC, Albuquerque T, Botelho A, Cunha MV. Polyclonal infection as a new scenario in Mycobacterium caprae epidemiology. Vet Microbiol. 2020;240:108533.  https://doi.org/10.1016/j.vetmic.2019.108533  PMID: 31902500 
/content/10.2807/1560-7917.ES.2023.28.12.2200852
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error