1887
Research Open Access
Like 0

Abstract

Background

Two rotavirus (RV) vaccines were licensed in Greece in late 2006 and included in the national immunisation programme in 2012.

Aim

To study the epidemiology and genotype distribution of RV in children during the post-vaccination period and assess the impact of increased vaccination coverage.

Methods

In a prospective multicentre hospital-based study, hospitalised children (≤ 16 years) with an RV-positive faecal sample were recruited. Epidemiological and genotyping analyses were performed; periods of low (2008–12) and moderate (2012–20) RV vaccination coverage were compared. Statistical analysis was performed with a chi-squared or Mann–Whitney U test and logistic regression.

Results

A total of 3,874 children (55.6% male; n = 2,153) with median age of 1.4 years (IQR: 0.5–3.3) were studied during 2008–20. Most RV-infected children were aged ≤ 3 years (72.2%) and hospitalised during December–May (69.1%). Common RV genotypes (G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], G12P[8]) were detected in 92.2% of samples; G-P combinations with prevalence above 1% were G4P[8] (44.1%), G1P[8] (25.4%), G2P[4] (14.9%), G9P[8] (3.5%), G12P[8] (2.2%), G3P[8] (2.1%), other (4.3%) and mixed (3.5%). Of all samples, 97.6% were homotypic or partially heterotypic to vaccines’ genotypes. With moderate vaccination coverage, the seasonal peak was detected earlier, children were older and partially or fully heterotypic genotypes were increased (p < 0.001).

Conclusions

In the era of moderate RV vaccination coverage in Greece, epidemiology of RV in hospitalised children seemed to change. However, most circulating genotypes remain homotypic or partially heterotypic to RV vaccines. Continuous epidemiological surveillance and genotyping are important to monitor possible changes arising from RV vaccines’ implementation.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.47.2101133
2022-11-24
2024-12-22
/content/10.2807/1560-7917.ES.2022.27.47.2101133
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/47/eurosurv-27-47-2.html?itemId=/content/10.2807/1560-7917.ES.2022.27.47.2101133&mimeType=html&fmt=ahah

References

  1. Troeger C, Forouzanfar M, Rao PC, Khalil I, Brown A, Reiner RC Jr, et al. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis. 2017;17(9):909-48.  https://doi.org/10.1016/S1473-3099(17)30276-1  PMID: 28579426 
  2. Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR, Abate H, Breuer T, Clemens SC, et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med. 2006;354(1):11-22.  https://doi.org/10.1056/NEJMoa052434  PMID: 16394298 
  3. Vesikari T, Matson DO, Dennehy P, Van Damme P, Santosham M, Rodriguez Z, et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N Engl J Med. 2006;354(1):23-33.  https://doi.org/10.1056/NEJMoa052664  PMID: 16394299 
  4. Rotavirus vaccines WHO position paper: January 2013 - Recommendations. Vaccine. 2013;31(52):6170-1.  https://doi.org/10.1016/j.vaccine.2013.05.037  PMID: 23746456 
  5. The Rota Council. Global introduction status. [Accessed: 17 Jun 2022]. Available from: https://preventrotavirus.org/vaccine-introduction/global-introduction-status
  6. Levidiotou S, Gartzonika C, Papaventsis D, Christaki C, Priavali E, Zotos N, et al. Viral agents of acute gastroenteritis in hospitalized children in Greece. Clin Microbiol Infect. 2009;15(6):596-8.  https://doi.org/10.1111/j.1469-0691.2009.02855.x  PMID: 19604279 
  7. Kavaliotis I, Papaevangelou V, Aggelakou V, Mantagou L, Trimis G, Papadopoulou V, et al. ROTASCORE Study: epidemiological observational study of acute gastroenteritis with or without rotavirus in Greek children younger than 5 years old. Eur J Pediatr. 2008;167(6):707-8.  https://doi.org/10.1007/s00431-007-0570-4  PMID: 17653571 
  8. Koukou D, Grivea I, Roma E, Tsioni H, Trimis G, Galanakis E, et al. Frequency, clinical characteristics, and genotype distribution of rotavirus gastroenteritis in Greece (2007-2008). J Med Virol. 2011;83(1):165-9.  https://doi.org/10.1002/jmv.21945  PMID: 21108355 
  9. Georgakopoulou T, Menegas D, Katsioulis A, Theodoridou M, Kremastinou J, Hadjichristodoulou C. A cross-sectional vaccination coverage study in preschool children attending nurseries-kindergartens: Implications on economic crisis effect. Hum Vaccin Immunother. 2017;13(1):190-7.  https://doi.org/10.1080/21645515.2016.1230577  PMID: 27669156 
  10. Konstantopoulos A, Tragiannidis A, Fouzas S, Kavaliotis I, Tsiatsou O, Michailidou E, et al. Burden of rotavirus gastroenteritis in children <5 years of age in Greece: hospital-based prospective surveillance (2008-2010). BMJ Open. 2013;3(12):e003570.  https://doi.org/10.1136/bmjopen-2013-003570  PMID: 24334153 
  11. Trimis G, Koutsoumbari I, Kottaridi C, Palaiologou N, Assimakopoulou E, Spathis A, et al. Hospital-based surveillance of rotavirus gastroenteritis in the era of limited vaccine uptake through the private sector. Vaccine. 2011;29(43):7292-5.  https://doi.org/10.1016/j.vaccine.2011.07.092  PMID: 21816195 
  12. Parez N, Giaquinto C, Du Roure C, Martinon-Torres F, Spoulou V, Van Damme P, et al. Rotavirus vaccination in Europe: drivers and barriers. Lancet Infect Dis. 2014;14(5):416-25.  https://doi.org/10.1016/S1473-3099(14)70035-0  PMID: 24758998 
  13. Usonis V, Ivaskeviciene I, Desselberger U, Rodrigo C, Pediatric ROTavirus European CommiTtee (PROTECT). The unpredictable diversity of co-circulating rotavirus types in Europe and the possible impact of universal mass vaccination programmes on rotavirus genotype incidence. Vaccine. 2012;30(31):4596-605.  https://doi.org/10.1016/j.vaccine.2012.04.097  PMID: 22579864 
  14. Leshem E, Lopman B, Glass R, Gentsch J, Bányai K, Parashar U, et al. Distribution of rotavirus strains and strain-specific effectiveness of the rotavirus vaccine after its introduction: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(9):847-56.  https://doi.org/10.1016/S1473-3099(14)70832-1  PMID: 25082561 
  15. Dóró R, László B, Martella V, Leshem E, Gentsch J, Parashar U, et al. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect Genet Evol. 2014;28:446-61.  https://doi.org/10.1016/j.meegid.2014.08.017  PMID: 25224179 
  16. Iturriza-Gómara M, Dallman T, Bányai K, Böttiger B, Buesa J, Diedrich S, et al. Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiol Infect. 2011;139(6):895-909.  https://doi.org/10.1017/S0950268810001810  PMID: 20707941 
  17. EuroRotaNet. European rotavirus network. Project information. Liverpool: EuroRotaNet. [Accessed: 17 Jun 2022]. Available from: https://www.eurorotanet.com
  18. Hellenic Statistical Authority. Demographic characteristics / 2011. Table A01. ELSTAT. [Accessed: 17 Jun 2022]. Available from: https://www.statistics.gr/el/statistics/-/publication/SAM03
  19. Matthijnssens J, Heylen E, Zeller M, Rahman M, Lemey P, Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol Biol Evol. 2010;27(10):2431-6.  https://doi.org/10.1093/molbev/msq137  PMID: 20522727 
  20. Pitzer VE, Viboud C, Simonsen L, Steiner C, Panozzo CA, Alonso WJ, et al. Demographic variability, vaccination, and the spatiotemporal dynamics of rotavirus epidemics. Science. 2009;325(5938):290-4.  https://doi.org/10.1126/science.1172330  PMID: 19608910 
  21. Cook SM, Glass RI, LeBaron CW, Ho MS. Global seasonality of rotavirus infections. Bull World Health Organ. 1990;68(2):171-7. PMID: 1694734 
  22. Pitzer VE, Viboud C, Lopman BA, Patel MM, Parashar UD, Grenfell BT. Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence. J R Soc Interface. 2011;8(64):1584-93.  https://doi.org/10.1098/rsif.2011.0062  PMID: 21508015 
  23. Patel MM, Pitzer VE, Alonso WJ, Vera D, Lopman B, Tate J, et al. Global seasonality of rotavirus disease. Pediatr Infect Dis J. 2013;32(4):e134-47.  https://doi.org/10.1097/INF.0b013e31827d3b68  PMID: 23190782 
  24. Tate JE, Panozzo CA, Payne DC, Patel MM, Cortese MM, Fowlkes AL, et al. Decline and change in seasonality of US rotavirus activity after the introduction of rotavirus vaccine. Pediatrics. 2009;124(2):465-71.  https://doi.org/10.1542/peds.2008-3528  PMID: 19581260 
  25. Verberk JDM, van Dongen JAP, van de Kassteele J, Andrews NJ, van Gaalen RD, Hahné SJM, et al. Impact analysis of rotavirus vaccination in various geographic regions in Western Europe. Vaccine. 2021;39(45):6671-81.  https://doi.org/10.1016/j.vaccine.2021.09.059  PMID: 34635375 
  26. Markkula J, Hemming-Harlo M, Salminen MT, Savolainen-Kopra C, Pirhonen J, Al-Hello H, et al. Rotavirus epidemiology 5-6 years after universal rotavirus vaccination: persistent rotavirus activity in older children and elderly. Infect Dis (Lond). 2017;49(5):388-95.  https://doi.org/10.1080/23744235.2016.1275773  PMID: 28067093 
  27. Sadiq A, Bostan N, Yinda KC, Naseem S, Sattar S. Rotavirus: Genetics, pathogenesis and vaccine advances. Rev Med Virol. 2018;28(6):e2003.  https://doi.org/10.1002/rmv.2003  PMID: 30156344 
  28. Aliabadi N, Antoni S, Mwenda JM, Weldegebriel G, Biey JNM, Cheikh D, et al. Global impact of rotavirus vaccine introduction on rotavirus hospitalisations among children under 5 years of age, 2008-16: findings from the Global Rotavirus Surveillance Network. Lancet Glob Health. 2019;7(7):e893-903.  https://doi.org/10.1016/S2214-109X(19)30207-4  PMID: 31200889 
  29. Sederdahl BK, Yi J, Jerris RC, Gillespie SE, Westblade LF, Kraft CS, et al. Trends in rotavirus from 2001 to 2015 in two paediatric hospitals in Atlanta, Georgia. Epidemiol Infect. 2018;146(4):465-7.  https://doi.org/10.1017/S0950268818000183  PMID: 29429424 
  30. Hungerford D, Allen DJ, Nawaz S, Collins S, Ladhani S, Vivancos R, et al. Impact of rotavirus vaccination on rotavirus genotype distribution and diversity in England, September 2006 to August 2016. Euro Surveill. 2019;24(6).  https://doi.org/10.2807/1560-7917.ES.2019.24.6.1700774  PMID: 30755297 
  31. Sabbe M, Berger N, Blommaert A, Ogunjimi B, Grammens T, Callens M, et al. Sustained low rotavirus activity and hospitalisation rates in the post-vaccination era in Belgium, 2007 to 2014. Euro Surveill. 2016;21(27).  https://doi.org/10.2807/1560-7917.ES.2016.21.27.30273  PMID: 27418466 
  32. Dulgheroff ACB, Figueiredo EF, Moreira LP, Moreira KC, Moura LMS, Gouvêa VS, et al. Distribution of rotavirus genotypes after vaccine introduction in the Triângulo Mineiro region of Brazil: 4-Year follow-up study. J Clin Virol. 2012;55(1):67-71.  https://doi.org/10.1016/j.jcv.2012.06.003  PMID: 22795600 
  33. Tapisiz A, Bedir Demirdag T, Cura Yayla BC, Gunes C, Ugraş Dikmen A, Tezer H, et al. Rotavirus infections in children in Turkey: A systematic review. Rev Med Virol. 2019;29(1):e2020.  https://doi.org/10.1002/rmv.2020  PMID: 30511804 
  34. Hungerford D, Vivancos R, Read JM, Pitzer VE, Cunliffe N, French N, et al. In-season and out-of-season variation of rotavirus genotype distribution and age of infection across 12 European countries before the introduction of routine vaccination, 2007/08 to 2012/13. Euro Surveill. 2016;21(2).  https://doi.org/10.2807/1560-7917.ES.2016.21.2.30106  PMID: 26794258 
  35. Iturriza-Gómara M, Dallman T, Bányai K, Böttiger B, Buesa J, Diedrich S, et al. Rotavirus surveillance in europe, 2005-2008: web-enabled reporting and real-time analysis of genotyping and epidemiological data. J Infect Dis. 2009;200(s1) Suppl 1;S215-21.  https://doi.org/10.1086/605049  PMID: 19821712 
  36. Chan MC. Return of norovirus and rotavirus activity in Winter 2020‒21 in city with strict COVID-19 control strategy, China. Emerg Infect Dis. 2022;28(3):713-6.  https://doi.org/10.3201/eid2803.212117  PMID: 35049493 
  37. Degiuseppe JI, Stupka JA, Argentinean Rotavirus Surveillance Network. Emergence of unusual rotavirus G9P[4] and G8P[8] strains during post vaccination surveillance in Argentina, 2017-2018. Infect Genet Evol. 2021;93(January):104940.  https://doi.org/10.1016/j.meegid.2021.104940  PMID: 34033946 
/content/10.2807/1560-7917.ES.2022.27.47.2101133
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error